GENERISANJE PROSTORA
NA OSNOVU PERSPEKTIVNIH SLIKA
I PRIMENA U OBLASTI GRADITELJSKOG NASLEĐA

- doktorska disertacija -

Mentor:
Prof. dr Nađa Kurtović-Folić

Novi Sad
2011
<table>
<thead>
<tr>
<th>Редни број, РБР:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификациони број, ИБР:</td>
<td></td>
</tr>
<tr>
<td>Тип документације, ТД:</td>
<td>Монографска публикација</td>
</tr>
<tr>
<td>Тип записа, ТЗ:</td>
<td>Текстуални штампани материјал</td>
</tr>
<tr>
<td>Врста рада, ВР:</td>
<td>Докторска дисертација</td>
</tr>
<tr>
<td>Аутор, АУ:</td>
<td>Весна Стојаковић</td>
</tr>
<tr>
<td>Ментор, МН:</td>
<td>Проф. др Нађа Куртовић-Фолић</td>
</tr>
<tr>
<td>Наслов рада, НР:</td>
<td>Генерисање простора на основу перспективних слика и примена у области градитељског наслеђа</td>
</tr>
<tr>
<td>Језик публикације, ЈП:</td>
<td>Српски</td>
</tr>
<tr>
<td>Језик извода, ЈИ:</td>
<td>Српски/енглески</td>
</tr>
<tr>
<td>Земља публиковања, ЗП:</td>
<td>Република Србија</td>
</tr>
<tr>
<td>Ужегеографско подручје, УГП:</td>
<td>Аутономна покрајина Војводина</td>
</tr>
<tr>
<td>Година, ГО:</td>
<td>2011</td>
</tr>
<tr>
<td>Издавач, ИЗ:</td>
<td>Ауторски репринт</td>
</tr>
<tr>
<td>Место и адреса, MA:</td>
<td>Трг Доситеја Обрадовића 6, 21000 Нови Сад</td>
</tr>
<tr>
<td>Физички опис рада, ФО:</td>
<td>7 поглавља, 206 страна, 212 цитата, 6 табела, 192 слике</td>
</tr>
<tr>
<td>(поглавља/страна/цитата/табела/слика/графика/прилога)</td>
<td></td>
</tr>
<tr>
<td>Научна област, NO:</td>
<td>Архитектура и урбанизам</td>
</tr>
<tr>
<td>Научна дисциплина, ND:</td>
<td>Теорије и интерпретације геометријског простора у арх. и урб.</td>
</tr>
<tr>
<td>Предметна одредница/Клучне речи, ПО:</td>
<td>3D моделовање, реституција, фотограметрија, перспективе, фотографија, простор, архитектура, градитељско наслеђе</td>
</tr>
<tr>
<td>УДК</td>
<td></td>
</tr>
<tr>
<td>Чува се, ЧУ:</td>
<td>Библиотека Факултета техничких наука у Новом Саду</td>
</tr>
<tr>
<td>Важна напомена, ВН:</td>
<td></td>
</tr>
<tr>
<td>Извод, ИЗ:</td>
<td>У овом раду креиран је нови полуавтоматски нормативни систем за генерисање простора на основу перспективних слика. Систем обухвата низ поступака чијим коришћењем се на основу дводимензионалних медијума, најчешће фотографија, генерише тродимензијална структура. Приступ је прилагођен решавању сложених проблема из области визуелизације градитељског наслеђа, што је у раду поткрпљено практичном применом система.</td>
</tr>
<tr>
<td>Датум прихватања теме, ДП:</td>
<td>03.03.2011.</td>
</tr>
<tr>
<td>Датум одбране, ДО:</td>
<td></td>
</tr>
<tr>
<td>Чланови комисије, КО:</td>
<td>Председник: Проф. др Шићанин Предраг</td>
</tr>
<tr>
<td>Члан: Проф. др Штулић Радован</td>
<td></td>
</tr>
<tr>
<td>Члан: Проф. др Дорословачки Раде</td>
<td></td>
</tr>
<tr>
<td>Члан: Проф. др Машуловић Драган</td>
<td></td>
</tr>
<tr>
<td>Члан, ментор: Проф. др Нађа Куртовић-Фолић</td>
<td>Потпис ментора</td>
</tr>
</tbody>
</table>

Образац Q2.НА.06-05- Издана 1
In this research a new semi-automated normative image-based modelling system is created. The system includes number of procedures that are used to transform two-dimensional medium, such as photographs, to three-dimensional structure. The used approach is adjusted to the properties of complex projects in the domain of visualization of cultural heritage. An application of the system is given demonstrating its practical value.
SADRŽAJ

1 **UVOD** .. 1

1.1 **PREGLED ISTRAŽIVANJA** .. 1

1.2 **CILJ RADA** ... 5

1.3 **PREDMET ISTRAŽIVANJA** .. 5

1.4 **KONCEPT ISTRAŽIVANJA I OSNOVNI POJMOVI** ... 6

1.5 **OKVIRI ISTRAŽIVANJA** ... 7

1.6 **PRIMENJENA METODOLOGIJA** ... 8

2 **RAZVOJ METODA ZA GENERISANJE PROSTORA NA OSNOVU PERSPEKTIVNIH SLIKA** 10

2.1 **VIZUELNA PERCEPCIJA** .. 10

2.1.1 **LIUDSKI VID** ... 11

2.1.2 **VEŠTAČKI VID** ... 16

2.2 **PERSPEKTIVNE SLIKE** .. 19

2.3 **FOTOGRAFIJE** ... 32

2.4 **RAZVOJ GENERISANJA PROSTORA NA OSNOVU PERSPEKTIVNIH SLIKA** 38

2.4.1 **RESTITUCIJA** .. 38

2.4.2 **FOTOGRAMETRIJA** ... 44

2.4.3 **3D MODELOVANJE** ... 49

2.5 **PREGLED POSTOJEĆIH METODA ZA GENERISANJE DIGITALNIH PROSTORNIH MODELARHITEKTONSKIH OBJEKATA** .. 51

2.5.1 **GENERISANJE PROSTORNIH MODELARHITEKTONSKIH OBJEKATA NA OSNOVU PERSPEKTIVNIH SLIKA** .. 54

3 **SISTEM ZA GENERISANJE PROSTORA NA OSNOVU PERSPEKTIVNIH SLIKA** .. 69

3.1 **INTERPRETACIJA PROSTORNIH STRUKTURA** .. 72

3.1.1 **INTERPRETACIJA GEOMETRISKIH ELEMENATA** .. 73

3.1.2 **INTERPRETACIJA RELACIJA** .. 77

3.2 **GENERISANJE PROSTORA NA OSNOVU JEDNE PERSPEKTIVNE SLIKE – RESTITUCIJA** 80

3.2.1 **ATRIBUTI GEOMETRISKIH ELEMENATA NA JEDNOJ PERSPEKTIVNOJ SLICI** 80

3.2.2 **ORIJENTACIJA – POLOŽAJ CENTRA PERSPEKTIVE** ... 83

3.2.3 **3D MODELOVANJE** ... 102

3.3 **GENERISANJE PROSTORA NA OSNOVU VIŠE PERSPEKTIVNIH SLIKA – FOTOGRAMETRIJA** 109

3.3.1 **ATRIBUTI GEOMETRISKIH ELEMENATA NA VIŠE PERSPEKTIVNIH SLIKA** 110

3.3.2 **ORIJENTACIJA – MEĐUSOBNI POLOŽAJ PERSPEKTIVNIH SLIKA** .. 111

3.3.3 **3D MODELOVANJE** ... 118
Predgovor

Problematici generisanja prostora na osnovu perspektivnih slika u ovom radu se pristupa na drugačiji način nego što je uobičajeno u savremenim istraživanjima. Brojne studije koje se bave problemima veštakog vida, obuhvataju fragmente ove tematike, ali je uočeno da su istraživanja pretežno uskostručna i vezana samo za unapređenja kao što su povećanje stepena automatizacije i postizanje veće preciznosti. Ovakve tendencije dovode toga da se sukcesivno iz sistema za generisanje prostora isključuje korisnik. Međutim, razvoj tehnologije je trenutno na takvom stupnju da je potpuno izuzimanje korisnika iz praktički primenljivih sistema veoma daleko u budućnosti.

Ipak, korisnik je u većini pristupa ovoj tematici drastično marginalizovan, a često i potpuno izostavljen. Šta je posledica toga? Sistemi se usavršavaju, ali čovjek koji ih koristi nema uvid u taj razvitak. Pored svih visokopreciznih uređaja i softvera, pri razmatranju greške potpuno je zanemaren ljudski faktor koji je najčešće uzrok velikim nedoslednostima u modelima realnog okruženja.

Ova studija posvećena je kreiranju sistema za generisanje prostora na osnovu slika i analiz primeni na snimanje graditeljskog nasleđa. U oblasti graditeljskog nasleđa prostorne modele kreiraju ili stručni kadrovi iz oblasti računarskih tehnologija ili stručnjaci iz oblasti arhitekture i zaštite nasleđa. U oba slučaja nepoznavanje ove druge oblasti stvara poteškoće. Modeli koje kreiraju korisnici iz oblasti računarskih tehnologija su uglavnom precizni ali često nisu pogodni za praktičnu upotrebu u domenu graditeljskog nasleđa. Modeli koje kreiraju arhitekti imaju dobru, fleksibilnu i upotrebljivu strukturu, ali su često nedovoljne preciznosti.

Do nedoslednosti modela koje kreiraju korisnici obrazovani u domenu arhitekture, dolazi najviše zbog toga što uvid u tehnološki postupak i/ili procese koji se koriste radi generisanja prostora na osnovu slika nisu prilagođeni prosečnom stručnom kadru. Drugačiji sistem za generisanje prostora, prilagođen praktičnoj upotrebi i načinu interpretacije prostora u oblasti arhitekture i graditeljskog nasleđa, značajno bi povećao broj upotrebljivih modela prostornog okruženja i njihov kvalitet. Cilj ovog rada je kreiranje takvog sistema.

Struktura rada je podeljena u tri dela.

U prvom delu su razmotreni tokovi razvoja sistema za generisanje prostora na osnovu slika i pratečih istraživanja. Izložen je detaljan razvoj sličnih sistema, srodnih teorijskih principa i tehnoloških postupaka, njihovih prednosti i nedostataka.

U drugom delu kreiran je i prikazan nov sistem. Taj sistem i korišćeni pristup su prilagođeni upotrebi u domenu graditeljskog nasleđa.

Korišćenjem prednosti teorija veštakog i ljudskog vida sistem čine povezane grupe komponente koje unosi korisnik ili generiše računar. Digitalna obrada podataka značajna je u segmentima sistema u kojima se pojavljivaju složeni geometrijski problemi, a analogijama sa konceptom ljudskog vida sistem se logički približava korisniku, što je veoma važno jer je njegova uloga od ključnog značaja za kreiranje pouzdanih modela realnog sveta.

Interpretacija prostornih struktura, odnosno način transformacije realnog (arhitektonskog) u virtualni (geometrijski) prostor uvedena je:

- tako da odgovara svojstvima perspektivne slike,
- da bude prilagođena korišćenju digitalnih tehnologija i primeni u domenu arhitekture i
• da bude jednostavna što omogućava budući razvoj i nadogradnje sistema.

Navedeni postupak je primenjen na osnovne grane sistema (fotogrametriju i restituiciju) kroz suštinske delove postupka (orijentaciju i modelovanje). Na kraju ovog poglavlja sažeto je opisan i shematski prikazan celokupan sistem.

U trećem delu težište je na primeni kreiranog sistema. Istaknut je značaj efikasnosti snimanja objekata graditeljskog nasleđa i prednosti upotrebe sistema za generisanje prostora na osnovu perspektivnih slika. Prikazani su odabrani ilustrativni primeri koji odražavaju praktičan značaj sistema.

Proces generisanja prostora na osnovu slika u prikazanom sistemu zasnovan je na adekvatnom kombinovanju različitih metoda i tehničkih postupaka. Postignuta je konzistentnost sistema kojom je obuhvaćen celokupan postupak oblikovanja digitalne 3D prostorne strukture polazeći od 2D perspektivnih slika objekta.
1 UVOD

1.1 PREGLED ISTRAŽIVANJA

Prostor omogućava i uslovljava postojanje arhitekture i njenog odnosa sa čovekom. Razvoj, tendencije, promena, oblikovanje, značenje i čitanje prostora su ideje dugo razmatrane u arhitekturi. Za izučavanje ovih i sličnih fenomena potreban je fond znanja, neophodni su podaci o prostoru koji postoji i koji je nekad postojao. Arhitekturu čine prostor i njegovi ograničivači koje čovek percipira i doživljava. Percepcija je trenutna. Doživljaj je trajniji, ali prolazan, imaginiran, oblikovan kroz prizmu uma posmatrača.

Medijumi su sredstva za pouzdano beleženje realnog prostora. Svaki izolovan medijum delimično oživiljava utisak o prostoru, ali uz određena ograničenja. Procesiranjem medijuma, prikazan prostor može biti transformisan u trodimenzionalnu virtualnu strukturu visokog stepena realnosti. 3D reprezentacija u formi digitalnog modela je najrealniji način oživljavanja prostornih struktura koje više ne postoje. 3D modeli pružaju sve potrebne prostorne informacije o trodimenzionalnim strukturama, a visoka fleksibilnost ovih modela i svakodnevna tehnološka usavršavanja ubrzano povećavaju njihov značaj.

Generisanje prostora na osnovu perspektivnih slika, odnosno fotografija, je jedan od načina kreiranja digitalnih 3D modela, budući da su fotografije veoma dostupne. Informacije o prostoru prikazanom na fotografijama su verodostojne. Ako ne postoji namenski kreirana tehnička dokumentacija objekta, fotografije su najpouzdaniji medijumi na kojima su zabeležene prostorne karakteristike (Bräuer-Burchardt i Voss 2001). Različiti tipovi fotografija su baza za različite načine procesiranja podataka, a krajnji cilj je kreiranje 3D modela postojećeg ili nepostojećeg prostora.

Građeni prostor je u interaktivnom odnosu sa ljudima. Njihov međusobni uticaj stvara ukupan društveno kulturološki razvoj čije vrednosti, oslonci, pokretačke sile i smernice ostaju zabeležene u pristupu i načinu građenja. Gubitak prostornog konteksta, njegova modifikacija i zaboravljanje izvornih okruženja izaziva umanjenje svesti o društvenom identitetu (Latellier 2007). Kao posledica progres, prostor se mora prilagođavati potrebama savremenog čoveka i tehnologije. Neminovno je da se forma prostornih struktura menja i da one nestaju.
Vrednost arhitekture često se određuje u kasnijim epohama. Fragmenti graditeljskog nasleđa postaju zaštićeni tek kada je potvrđena njihova vrednost. Trajnost i kvalitet objekta ipak je ograničen i često se vrednost arhitektonskih i urbanističkih tipova uvida nakon što Puno objekata postane oštećeno ili nestane. Iz takvih situacija proizilazi potreba za rekonstrukcijom srušenih objekata.

Usled uticaja realnog sveta prostorne strukture nestaju, ali u neograničenim 3D virtuelnim okruženjima svaka struktura može da ostane zabeležena (Waldhäusl 1992; Bräuer-Burchardt i Voss 2001). Današnji tehnološki sistemi dozvoljavaju čuvanje i omogućavaju vršenje operacija nad velikim količinama prostornih podataka, što dozvoljava skladištenje i praćenje izmena relevantnih struktura. Procesiranje velike količine podataka otvara nove mogućnosti uočavanja tendencija razvoja širih urbanističkih kompleksa (Takase i drugi 2003; Frueh i Zakhor 2001), kao i eksplicitno izdvajanje karakterističnih tipoloških elemenata arhitektonskih grupa (Masuch i drugi 1999). Fleksibilnost i upotrebljivost 3D modela, dostupnost virtuelne arhitekture putem interneta, razvoj stereoskopskih sistema posmatranja virtuelnih prostora, interaktivni odnos računara i korisnika uljavu izuzetan značaj principima generisanja virtualnih modela (Čahtarević 2008).

Virtuelno dokumentovanje graditeljskog nasleđa postoji u različitim oblicima. Osnovni pristupi granaju se u organizaciju baza podataka ili kreiranje virtuelne realnosti. Optimalne rezultate pruža kombinacija ova dva pristupa (Bertino i drugi 2006). 3D modeli dobijaju sve veći značaj u okviru prezentacije arhitekture i izrade tehničke dokumentacije.

Savremene metode kojima se vrši snimanje objekata graditeljskog nasleđa najčešće su lasersko skeniranje, generisanje prostora na osnovu slika (image-based modeling) ili direktno merenje (Kwon i drugi 2001). Generisanje prostora na osnovu fotografija ima niz prednosti u odnosu na starije (manuelno merenje i snimanje objekata) i savremenije (lasersko skeniranje ili snimanje specijalno prilagođenim aparaticima) metode. Izbor metode za snimanje objekata zavisi od specifičnih potreba projekta. Laserskim skeniranjem dobijaju se podaci veoma visoke preciznosti, što je naročito značajno pri snimanju slobodnih formi, kao što su skulpturalni i plastični motivi na istorijskim objektima. Odavde vid snimanja zahteva kvalitetan skener, određenu konfiguraciju računara za obradu i skladištenje podataka i visoko stručni kadar za rukovanje skenerom i procesiranje podataka. Zbog toga je skeniranje zastupljeno u bogatom zemljama i koristi se uglavnom za snimanje spomenika od izuzetnog svetskog značaja. Skener se retko koristi u siromašnijim i nerazvijenijim područjima. Direktno ručno merenje daje zadovoljavajuće rezultate dokumentovanja arhitektonskih objekata, ali je proces veoma spor i zahteva puno terenskog rada, što direktno umanjuje ekonomičnost ovog pristupa. Na ovaj način moguće je snimiti mali procenat objekata od značaja, te mnogo spomenika na područjima gde se ne postoje dovoljna ulaganja u dokumentovanje graditeljskog nasleđa ostaje nezabeleženo. U tom slučaju, kada je potrebno efikasno snimiti velike količine podataka, bez ulaganja finansijskih sredstava, kreiranje modela na osnovu fotografija je optimalno rešenje (Stojaković i Tepavčević 2009).

Ameterviški foto aparati su veoma pristupačni za kreiranje baze podataka o postojećim objektima, a istorijske fotografije nepostojeeih objekata su najpouzdaniji zapis tadašnjeg realnog stanja (Shashi i Jain 2007; Pollefeys, Van Gool i drugi 2003). Zbog toga je za unapređenje sistema za snimanje objekata graditeljskog nasleđa, fotografija adekvatan medijum za unos prostornih podataka.
Generisanje prostora na osnovu fotografija je metod koji je već dugo u upotrebi. Razmeravanje sa fotografija razvija se neposredno nakon nastanka fotografije. U skladu sa dometima tehnološkog razvoja i ciljevima novih problema, metode obrade fotografija su se menjale i usavršavale\(^1\).

Dve osnovne grane generisanja prostora na osnovu slika su restitucija i fotogrametrija.

Restitucija podrazumeva upotrebu jedne fotografije, a fotografimetrija upotrebu niza fotografija istog prostora. Metode restitucije razvijaju se od perioda renesanse, prvo u okviru izučavanja slikarskih principa perspektivnog preslikavanja (Andersen 2007), a kasnije kao nezavisna geometrijska disciplina. Paralelno sa razvojem fotografije raste interesovanje i počinje intenzivniji razvoj principa razmeravanja sa jedne fotografije.

Značajno ograničenje manuelne restitucije je ograničenost alata. Papir nije beskonačna površina, konstrukcije udaljenih tačaka i preseci pravih pod oštrim uglovima su neprecizni, konstrukcije su često kompleksne, i svi koraci konstrukcije moraju biti izvedeni u 2D koordinatnom sistemu iako su vezane za 3D prostor. Upotrebom digitalnih tehnologija, ove nedostatke je moguće prevazići.

I fotogrametrija se razvijala pre upotrebe računara kao analogna metoda. Upotreba fotografimetrije u početku je bila usko vezana za kartografiju. Polovinom 20. veka razvijen je niz instrumenata i sistema za prikazivanje topografije terena i izradu karata naseljenih mesta na osnovu fotografija slikanih iz vazduha. Digitalna obrada podataka je omogućila nadogradnju i dalji ubrzan razvoj tadašnjih analitičkih fotogrametrijskih teorija. U skladu sa tim, proširuje se i polje primene fotogrametrije, pa između ostalog obuhvata i arhitektonske objekte slikane sa zemlje.

Paralelno sa masovnom upotrebom računara, razvijaju se brojni sistemi za generisanje prostornih modela na osnovu specijalnih ili amaterskih fotografija. Sistemi se razvijaju kao automatski i poluautomatski.

Automatizacija nekih segmenata prepoznavanja prostora je još uvek predmet dalje budućnosti (Pizlo 2008; Kanade 1981). Celoviti sistemi, koji treba da budu praktično korišćeni i upotrebljavati i dalje su poluautomatski, odnosno zahtevaju delimično učešće korisnika koji posreduje u procesu generisanja prostornog modela na osnovu fotografije.

\(^1\) U ovom odeljku navedene su samo osnove razvoja i tipovi savremenih sistema. Zbog obimnosti, detaljan pregled dosadašnjih istraživanja dat je u poglavlju 2 (Razvoj metoda za generisanje prostora na osnovu perspektivnih slika).
Iz toga proizlazi jedan od osnovnih nedostataka postojećih aplikacija za modeliranja na osnovu slika. Korisnik od kojeg zavisiv kvalitet modela, veoma često ne razume u potpunosti proces koji se odvija automatski i zbog toga može da napravi drastične greške. Sistemi za modeliranje na osnovu slika su dostupni velikom broju korisnika, ali samo mali broj ih pravilno koristi.

Veći stepen vizuelizacije procesa koji se odvija automatski uticao bi na kvalitetnije sudevanje korisnika koji u toku modelovanja mora da donosi odluke ključne za verodostojnost modela. Procedure koje se oslanjaju isključivo na numeričke i analitičke algoritme ne pomažu korisniku da razume i poboljša proces generisanja prostornog modela.

U aplikacijama koje se bave modelovanjem na osnovu jedne fotografije nije dovoljno razvijeno rešenje za automatsku kontrolu neodređenosti (shape ambiguity) jedinstvene perspektivne projekcije (Murdoch 2009). Korisnik koji kreira model, postavlja geometrijske elemente u 3D koordinatni sistem potpuno proizvoljno, kao i u svim ostalim aplikacijama za 3D modeliranje, vodeći pri tome računa jedino da projekcija modela odgovara fotografiji. Zbog neodređenosti jedne projekcije, korisnik često u model ugrađuje netačne prostorne odnose. Kako jedna projekcija nedovoljno određuje prostornu strukturu, u proces modeliranja bi trebalo uključiti ograničenja koja su vezana za pouzdane činjenice koje se mogu uočiti na jedinstvenoj projekciji. Na taj način korisnik bi neprestano u toku modelovanja imao tačnu informaciju o regularnosti položaja geometrijskih elemenata u 3D prostoru, što bi isključilo mogućnost pojave greške usled nerazumevanja višesmislenosti jedne perspektivne slike.

Postojeće aplikacije za generisanje prostornih modela na osnovu slika baziraju se ili na sistem fotogrametrije ili na sistemu restitucije. Kompleksni problemi virtualnih rekonstrukcija objekta graditeljskog nasleđa često zahtevaju simultanu upotrebu oba metoda. Postojeće aplikacije ne pružaju mogućnost paralelnog modeliranja na osnovu jedne i više fotografija u istom koordinatnom sistemu. Neophodno je prebacivanje fajlova iz jedne aplikacije u drugu, što je osetljiva tačka u kojoj često može da dođe do greške u modelu.

U cilju prevazilaženja navedenih nedostataka, u ovom radu kreiran je nov sistem za generisanje prostornih modela na osnovu perspektivnih slika.

2 Na primer, aplikacija sv3DVision ima alate za fotogrametriju i za restituciju, ali na osnovu prikaza softvera (Aguilera i Lahoz 2006) čini se da je simultano korišćenje nemoguće. Ovi pristupi su objedinjeni radi dizajna univerzalnog softvera pogodnog za educaciju u domenu IMB-a, a nisu namenjeni rešavanju kompleksnih problema.
1.2 CILJ RADA

Cilj ovog rada je kreiranje drugačijeg sistema za generisanje prostora na osnovu perspektivnih slika u odnosu na postojeće sisteme. Sistem je normativni, što znači da kreiranje sistema podrazumeva osmišljavanje postupka za generisanje prostora na osnovu perspektivnih slika. Implementacija sistema nije cilj ovog rada.

Sistem primarno treba da bude prilagođen generisanju prostornih modela u oblasti graditeljskog nasleđa. Zbog toga je neophodno da:

- sistem može da koristi sve tipove fotografija koje prikazuju graditeljsko nasleđe,
- segmenti, komponente i veze u sistemu budu u skladu sa geometrijskim karakteristikama zastupljenim u kontekstu istorijskog građenog okruženja,
- sistem bude jasan i pristupačan prosečnom korisniku iz oblasti graditeljskog nasleđa i
- izlazni podaci budu trodimenzionalni modeli, fleksibilni i pogodni za dalju upotrebu.

Uopštena vrednost sistema je ilustrovana na adekvatno izabranim primerima.

1.3 PREDMET ISTRAŽIVANJA

Perspektivne slike su veoma značajni izvor prostornih informacija. Ekstrakcija geometrije, oblika i prostora u celini na osnovu slike na kojoj je prikazan je neophodna u raznim naučnim oblastima. U oblasti arhitekture i urbanizma, gde se prostorno okruženje neprestano menjalo, a podaci o nepostojecim objektima nestaju, izučavanje prostornih struktura istorijskog nasleđa značajno uvećava ukupni fond znanja.

Osnovni problem od kojeg polazi ovo istraživanje je geometrijska veza trodimenzionalnog prostora u dvodimenzionalnim perspektivnim slikama (V. Stojaković 2009; V. Stojaković 2008a). Veze koje se kreiraju prema osnovu prostornih podataka nisu ekvivalentne vezama koje se kreiraju na osnovu slike. Mogućnosti generisanja trodimenzionalnog modela prikazanog prostora na osnovu njegove dvodimenzionalne prezentacije (slike) su predmet ovog istraživanja.

Na osnovu jedne ili više perspektivnih slika može se generisati model prostora sa slike korišćenjem:

- pravila perspektivnog projiciranja
- geometrijskih relacija.
Proces perspektivnog projiciranja može se interpretirati na različite načine. Analitički i numerički metodi su korišćeni u svim postojećim sistemima. Ovaj način interpretacije je neophodan radi kreiranja algoritma koji automatski procesira podatke. Dodavanjem geometrijske interpretacije, koja je korišćena u ovom radu, naglašena je potreba da korisnik razume proces projiciranja. Razumevanje sistema je neophodno da bi se ostvarilo korektno učešće korisnika u procesu generisanja prostora. Zbog toga je vizuelizacija procesa generisanja prostora na osnovu slika postala još jedan od predmeta istraživanja.

Geometrijske relacije (constraints), uočene na slikama, neophodne su za shvatanje i interpretaciju prostornih odnosa između elemenata. Učešće korisnika u sistemima za interpretaciju prostora i dalje je neophodno usled nesavršenosti automatizacije u domenu veštačkog vida (Pizlo 2008). Relacije su istražene sa aspekta analogije sa ljudskim vidom i upotrebljivosti u oblasti graditeljskog nasleda.

Povezivanje relacija koje uvodi korisnik i automatizovanog generisanja prostora korišćenjem računara u jedinstven poluautomatski sistem prilagođen potrebama reprezentacije objekata graditeljskog nasleda je primarni problem ovog istraživanja.

Simultano objedinjavanje prirodnog prepoznavanja oblika i softverskog 3D modelovanja i kalibracije u složenom sistemu je značajan doprinos ovog rada teoriji geometrijske interpretacije u domenu uspostavljanja veza slike i prostora.

1.4 KONCEPT ISTRAŽIVANJA I OSNOVNI POJMOVI

Istraživanja je podeljeno u tri dela.

Prvi deo je analiza razvoja sistema za generisanje prostora na osnovu slika. U drugom delu je prikazan novi sistem za generisanje prostora na osnovu slika. Treći deo su primeri koji ilustruju upotrebu ovog sistema u oblasti graditeljskog nasleda.

Vizuelna percepcija podrazumeva svaki način dobijanja informacija o prostoru na osnovu njegove vizuelne reprezentacije. Ona obuhvata ljudski i veštački vid. Sintetizovan je razvoj, shvatanje, tumačenje i osnovne osobine ljudskog i veštačkog vida.

Prelaz iz domena vizuelne percepcije ka sistemima za generisanje prostora ostvaren je analizom razvoja karakteristika slike kao dvodimenzionalnog medijuma koji prikazuje prostor. Akcent je na sumiranju osobina perspektivnih slika i fotografija. Perspektivna slika je dvodimenzionalni prikaz prostora dobijen perspektivnim projiciranjem svake tačke prostora na projekcijsku ravan vidnim zracima koji sadrže centar perspektive. Fotografija je slika prostora na ravnim filmima (ili senzora, što je ekvivalent filmu za digitalni foto aparat) u pravcu zrakova koji prolaze kroz sistem sočiva foto aparat. Najbitnija razlika perspektivne slike i fotografije je što u sistemu foto aparata slika postaje distorzirana (Morvan 2009), tako da ona ne odgovara u potpunosti perspektivnoj projekciji kod koje je centar perspektive jedna tačka. Dakle, perspektivna slika je idealizovana fotografija, odnosno fotografija bez deformacija.

3 U ovom radu za označavanje procesa generisanja određene projekcije je korišćen pojam 'projiciranje', a ne pojam 'projektovanje', zbog toga je u oblasti arhitekture uobičajeno da se pojam 'projektovanje' odnosi na proces stvaranja arhitektonskog dela.
Nakon što su razmisljene metode koje prethode generisanju prostora, prikazana je i analiza postupaka za generisanje na osnovu slika. Zasebno je promatran razvoj restitucije, fotogrametrije i 3D modelovanja.

Na kraju prvog dela dat je pregled postojećih metoda za digitalnih prostornih modela arhitektonskih objekata. Razvrstani su osnovni tipovi ovih metoda i sažeto su prikazane njihove karakteristike. Prvi deo istraživanja predstavlja podlogu za kreiranje novog sistema koji je prikazan u narednom delu rada.

U drugom delu rada je prikazan nov sistem za generisanje prostora na osnovu slika.

Realni arhitektonska prostor uprošćen je interpretacijom geometrijskih elemenata i relacija i time je transformisan u dekarto-visit prostor. Korišćeni su osnovni geometrijski elementi i tačka, prava i ravan. Relacijama je ustanovljen međusobni odnos ovih elemenata (relacije incidencije i relacije položaja) i međusobna jednakost (jednakost dužina i jednakost uglova).

Generisanje prostora na osnovu slika obuhvata proces određivanja parametara foto aparata i proces 3D modelovanja. Parametri foto aparata su unutrašnji i spoljašnji. Unutrašnji parametri odnose se na deformacije i položaj centra perspektive u odnosu na fotografiju (žižna daljina i projekcija centra perspektive), a spoljašnji parametri podrazumevaju položaj foto aparata u odnosu na lokalni koordinatni sistem, odnosno u odnosu na prikazane objekte.

Proces generisanja prostora suštinski se razlikuje u zavisnosti od toga da li se vrši na osnovu jedne ili na osnovu više fotografija⁴. Zbog toga je u celom istraživanju generisanje prostora podeljeno na restituciju i fotografiju.

Proces orientacije podrazumeva detekciju parametara foto aparata. Kod korišćenja restitucije odnosi se na detekciju položaja centra perspektive u odnosu na fotografiju, a kod korišćenja fotogrametrije na detekciju međusobnog položaja fotografija u trenutku snimanja. Proces 3D modelovanja podrazumeva određivanje prostornog položaja elemenata koji definišu lokaciju prikazanih objekata u odnosu na ravan slike.

Treći deo istraživanja je primena osmišljenog sistema na nekoliko ilustrativnih primera koji pokazuju kvalitet, nedostatke, potencijal i upotrebljivost kreiranog sistema.

1.5 OKVIRI ISTRAŽIVANJA

Okvir istraživanja odnose se na:

- nivo detaljnog iskustva,
- pristup i način interpretacije sistema i
dekatna uopštena.

Nivo detaljnog u ovom istraživanju određuje stepen razrade sistema. Hijerarhijska struktura sistema je razvijena koliko je potrebno da se ostvari suština novog načina interpretacije generisanja prostora na osnovu slika i pokažu njene bitne prednosti. Razgranatost sistema ne treba da bude

⁴ Bez obzira što pojam fotogrametrija, zapravo znači ‘meriti sliču’ u skladu sa savremenim podvrstama tipova merenja, neophodno je napraviti drugačiju specifikaciju pojma ‘fotogrametrija’ i distancirati ga od pojma restitucije (Rapp 2008).
prevelika da ne bi poremetila jasan prikaz suštine. Ovakav pristup stvara strukturu koja je jezgrovita a ipak dovoljna za praktičnu upotrebu.

Uopštenje korišćenih struktura odnosi se na:
- način interpretacije fotografije,
- stilizaciju prostora i
- sintetizovanje tipičnih problema.

Fotografije su u sistem uključene u idealizovanoj formi, to jest tretirane su kao perspektivne slike. Naknadna ispravka deformacija koje se usled toga pojavljuju je moguća, ali nije predmet ovog istraživanja.

U oblikovanju arhitektonskih objekata, bez obzira na epohu, pojavljuju se forme koje ne pripadaju nijednoj od korišćenih kategorija. U ovom istraživanju prostor je interpretiran ograničenim nizom elemenata u skladu sa geometrijom koja je najčešće zastupljena u istoriskom građenom kontekstu, a specifični oblici su zanemareni.

Primena sistema za generisanje prostora na osnovu slika je pokazana na karakterističnim složenim primerima. Ovi primeri su izabrani kao predstavnici problema koji se učestalo pojavljuju u domenu vizuelizacije graditeljskog nasleđa. Mnoštvo usko specifičnih i neubojčenih problema nije ilustrovano u ovom radu.

Postavljanjem navedenih okvira, istraživanje je svedeno na izučavanje problema koji su neophodni i potrebni za stvaranje sistema za generisanje prostora na osnovu slika.

1.6 PRIMENJENA METODOLOGIJA

Osnova za kreiranje novog sistema za generisanje prostora na osnovu perspektivnih slika je prikupljanje podataka o postojećim pristupima tom problemu. Problem generisanja prostora na osnovu slika je ujedno i teorijski i praktičan problem. Kompleksnost problema zahteva poznavanje i upotrebu proučavanja više oblasti kao što su geometrija, vizualna percepcija, arhitektura i očuvanje graditeljskog nasleđa.

U izučavanju postojećih sistema za generisanje prostora na osnovu slika upotrebljena je elementarna genetička analiza sličnih sistema. Razvoj alata za generisanje prostora i/ili tumačenja upotrebljenih procedura pokazuje određene tendencije. Putanje razvoja i uslovi koji su na njih uticali ustanovljene su genetičko klauzalnom analizom. Izdvojene su analoge ključne procedure i izvršena je adekvatna klasifikacija i sistematizacija.

Raščlanjivanjem delova sistema za generisanje prostora na osnovu slika i eksplikativnom analizom njegovih delova određena je suština funkcionalnih uticaja dvodimenzionalnog prikaza elemenata na položaj u trodimenzionalnom koordinatnom sistemu. Utvrđivanjem uzročno posledičnih veza između ulaznih i izlaznih podataka analizirana su ograničenja postojećih tehničkih
postupaka i konkretizovana je potreba za novim načinom interpretacije sistema za generisanje prostora na osnovu slika.

Nova interpretacija postupka za generisanje prostora na osnovu perspektivnih slika zahteva potpunost sistema, zbog čega su parametri slike, geometrijski elementi i njihovi odnosi utvrđeni aksiomatski. U cilju dosledne primene aksiomatskog pristupa na realne strukture i medijume, korišćen je određen nivo apstrakcije. Apstrakcija je uvedena radi preobraćanja realnog (arhitektonskog) u imaginarni (dekartovski) prostor. Primjenjena je u domenu uprošćenja geometrije realnih prostornih struktura i u domenu ispuštanja nebitnih deformacija realne fotografije. Stvarni arhitektonski objekti i njihove reprezentacije transformisane su u komponente sistema. Komponente sistema i njihove međusobne veze su eksplikativno definisane.

Interpretacija prostora i njegove perspektivne slike korišćenjem ograničenog niza geometrijskih elemenata i relacija je neophodna radi uređivanja logičke strukture sistema. Geometrijski elementi i relacije su osnovne komponente sistema. Njihova klasifikacija utvrdila je međusobne strukturne veze, koje su oformljene u razgranatoj hijerarhijskoj strukturi. Relativni uticaj komponenata i segmenata sistema je označen funkcionalnim vezama koje su detaljno opisane za svaki pojedinačni slučaj.

Uzajamnim vezivanjem delova sistema sintetizovan je proces generisanja prostora na osnovu slika. Simultanom upotrebom induktivne i deduktivne metode je definisan koherentan i konzistentan sistem koji polazi od perspektivne slike kao ulaznog podataka a finalni izlazni rezultat je trodimenzionalni model prikazanog prostora.

Radi praktične provere i verifikacije opisanih metoda prikazano je nekoliko studija slučaja koje su reprezentativni primjeri deduktivnih podskupova opisanog sistema.

Materijal za testiranje i upotrebu ovog sistema je prikupljan popisivanjem i razmatranjem ugroženih spomenika kulture u podunavskom području Vojvodine. Klasifikacijom na osnovu boniteta, količine i dostupnosti informacija o objektima vršena je selekcija. Retrospektivna analiza ponavljanih karakteristika forme i građevinskog stanja ovih objekta uticala je na odabir primarnih ciljeva istraživanja. Iz ukupnog fonda obrađenih slučajeva izdvojeno je nekoliko najilustrativnijih primera na kojima je primenjen i oproban opisani sistem.
2 RAZVOJ METODA ZA GENERISANJE PROSTORA NA OSNOVU PERSPEKTIVNIH SLIKA

2.1 VIZUELNA PERCEPCIJA

Veza između stvarnih trodimenzionalnih struktura i njihovog doživljaja, odvija se posredno, stvaranjem slike prostora (Curry 1995; Kosslyn 1995). Pod pojmom vizuelne percepcije podrazumeva se interpretacija okruženja na osnovu slika. Dve osnovne kategorije poimanja prostora na osnovu slika koje će biti izučavane u ovom radu su:

- veštački (kompjuterski) vid (computer vision) i
- prirodni (ljudski) vid (human vision).

Pojam slike se u domenu percepcije, analogno prethodnoj podeli, može razmatrati kao projekcija prostora na mrežnjaču ili drugi dvodimenzionalni medijum koji simulira fizički objekat.

Iako je poimanje prostora bazirano na dvodimenzionalnim slikama, prostor se opisuje kao trodimenzionalan. Trodimenzionalni dekartovski prostor je model na kojem se bazira geometrijska interpretacija materijalizovanog sveta. U daljoj analizi biće korišćen termin prostor ili prostorna struktura.

Pri razmatranju ljudskog, kao i veštačkog vida, veoma je važno razdvojiti dve zasebne teme, a to su:

- prepoznavanje oblika, odnosno figura, tela i prostora i
- izučavanje indikatora dubine na slici (depth cues), u koje spadaju teksture, senke, pokret i binokularna disperzija (Pizlo 2008).

Ove dve kategorije su ključne za shvatanje vizuelne percepcije. U toku evolucije teorija o načinu funkcionisanja vida jasno se prepoznaje oscilovanje preovlađujuće misli između dva navedena pola. Prostor, u specijalnim slučajevima, može biti poiman samo na osnovu percepcije oblika ili samo na osnovu indikatora dubine.

U svakodnevnom okruženju simultano korišćenje oba pristupa pruža najbolje rezultate. Teorije koje se bave načinom formiranja čovekov svesti o prostoru menjale su se kroz vreme u zavisnosti od ideja i trendova vodećih istraživača.
2.1.1 LJUDSKI VID

Za poimanje prostornog okruženja primarno sredstvo je vid. Proučavanje mehanizma vida i percepcije prostora oduvek je zanimalo istraživače, usled čega su se razvijale različite teorije zasnovane na aktuelnim saznanjima, ograničenjima i dometima određenog doba.

Prostorna percepcija ima dvojni koncept. Već je Dekart (René Descartes, 1596-1650) razdvojio različite mentalne procese kao što su percepcija (biti svestan prostora) i kognicija (shvatanje i razumevanje) (Pizlo 2008). Informacija nastala vizuelnom stimulacijom oka je prvi stepen percepcije. Nakon toga, informacija preoblikovana u neurološki impuls odlazi u moždanu koru, gde se odvija prepoznavanje osnovnih formi i oblika na osnovu kontura. Forme i oblici se objedinjuju u složenije strukture dok se ne ostvari percepcija celovite scene. Dalje se u drugim područjima mozga vizuelne informacije povezuju sa memorisanim iskustvima, na osnovu čega se u potpunosti shvata prostor (Solso 1994). Pod prepoznavanjem podrazumeva se svrstavanje objekta u pogodnu kategoriju (Ullman 1996).

Izolovan vizuelni impuls i prepoznavanje oblika definišu se kao 'low-level vision', a prepoznavanje, pripisivanje svojstava i razmišljanje o objektu se naziva 'high-level vision’ (Nalwa 1993; Freeman, Pasztor i Carmichael 2000; Ullman 1996; Šidanin 2001). U daljem istraživanju izučavanje high-level vision sistema je zanemareno, jer geometrija objekata i prostorni odnosi elemenata pripadaju domenu low-level vision problema.

Prikaz razvoja teorija ljudskog vida u ovom istraživanju razgraničene su na:
A. teorije koje se bave načinom stvaranja slike u vidu
B. teorije koje se bave prepoznavanjem oblika i
C. teorije koje se bave stereo vidom.

A. Prve poznate teorije koje se bave načinom stvaranja slike u vidu potiču iz antičkog perioda. Najzastupljenije su bile dve suštinski suprotne teorije, teorija emisije i teorija intermisije. U obe se pojavljuje pojam 'zraka' koji prenosi sliku, iako njegova priroda nije bila objašnjena. Teorija emisije oslanjala se na ideju da zraki polaze od posmatrača ka predmetu posmatranja, dok teorija intermisije koja je sličnija današnjim shvatanjima, zastupa obrnutu mišljenje, da zraki polaze od predmeta posmatranja ka posmatraču.

Različiti mislioci tog vremena podržavali su ove teorije koje su se uklapali određena u filozofska načela (Ackerman 1978), usled čega je razvijen čitav splet raznovrsnih teorija koje se bave vidom, anatomijom oka, prirodom svetlosti, poreklom boja i drugim (Ika 2010).

U srednjem veku arapski filozofi nadograđuju antičke teorije. Al-Kindi (al-Kindi, 801-873) podržava teoriju emisije, međutim tvrdi da zraki moraju biti trodimenzionalni, a ne jednodimenzionalni kao što je prvobitno pretpostavljeno. Takođe, u oblasti percepcije uvodi pojam konusnog vidnog polja i diskutuje o oštrini vida u zavisnosti od položaja objekta u odnosu na omotač konusa, ali ne dolazi do jasnih zaključaka o uzrocima i mehanizmu oka.

Alhazen (Abū ‘Alī al-Hasan ibn al-Hasan ibn al-Haytham, 965-1040/1), smatra se začetnikom savremene optike, utoliko više što je njegova knjiga o optici prevedena u 12. veku na latinski, zbog čega je imala značaj znacaj na buduće istraživače. Na osnovu eksperimentalnih istraživanja u kojima je koristio ogledala i sočiva uveo je ideju o postojanju zrakova koji kao prave linije stižu u oko

При projiciranju vidnih zrakova na mrežnjuča, slika se dva puta obrče (levo-desno и gore-dole). Postojele су различите теории о томе зашло, а на оново ових правила, свет не видимо наопако. Dekart je tvrdio да се слика поново око реце у мозку. Као потврду takvог mišljenja koristio je činjenicu да се слеп čovek bez problema služi ukrštenim štapovima, тако што у levoj ruci drži štap kojim опипava desnu страну и obrnuto (Pizło 2008). Postojele су и теорије да је čовек кад се rodi vidi sliku наопако, док не naučи да je okrene (Hatch 2000). Savremene teorije tvrde да fizička svojstva čovečjег приjemног aparata nemaju direktnу и просту везу са načinом perception. Dokaz за takvu tvrdnju je и činjenica da je mrežnjača konkavna, а mi свет не видимо као projekciju на konkavnu kalotu (Bianco n.d.).

Лjudski vid se bazira на projekciji slike prostora na mrežnjuču. Ukoliko pretpostavimo да posmatrač stoji ispred idealne jednobojne потпуно homogenо osvetljene površi koja обухвата čitavo njegovo vidno polje, он неће moći да naслuti gde se та površ налази. Samim тим и dvodimenzionalni prikaz takvог prostora не pruža nikakве informacije о простору. Posmatrač je dezorijentisan, jer не може да prepoznaje konture objekata. Ovakav efekat se назива Ganzfeld ('čitavo polje') (Solso 1994). Аko je struktura простора u видном полju таква da posmatrač spoznaje njene prostorne odnose, onda се dalje može analizirati njена reprezentacija.

5 Čovek на оново различитих слика istog objekta може да prepoznaje trodimenzионалni objekat i vrši razvrstavanja figure и облика. Taj fenomen назива se ‘konstantnost облика’
familija figura kod kojih konstantnost oblika zapravo ne postoji, jer se svaka elipsa može projicirati u bilo koju drugu. Taulesovi eksperimenti zadali su određenu smernicu narednim istraživanjima, koja je zaključena opovrgavanjem zavisnosti konstantnosti oblika i ugla posmatranja (Stavrianos 1945), što je pokazano korišćenjem pravougaonih figura umesto elipsi u sličnim ogledima.

Da bi se adekvatno analizirao problem konstantnosti oblika potrebno je uočiti komplementaran problem, 'neodređenost oblika' (shape ambiguity)6 (Pizlo 2008). Ovo je posebno važno pravilno tretirati kada se izučava trodimenzionalno telo, a ne ravna figura.

Veoma važan doprinos izučavanju oblika utvrđen je među teoretičarima geštalte teorije. Njihov ključni doprinos je u postavljanju teze da se oblik mehanički prepoznaje na osnovu rasporeda određenih elemenata na slici.

Grupisanje elemenata na slici vrši se prema različitim principima od koji je za prepoznavanje oblika najbitniji izolovanje oblika (figure-ground organisation) (slika 1). Ovaj princip označava spoznaju figura na osnovu principa kontinuiteta i zatvorenosti, kao regiona koji odgovaraju objektima na slici (Lusted 2005). Takođe, geštalte teoretičari su tvrdili da ista pravila važe za dvodimenzionalne figure kao i za trodimenzionalna tela i da binokularna disperzija ima zanemarljiv uticaj na prepoznavanje objekata (Pizlo 2008).

![Slika 1. Princip izolovanja figura – pokazuje značaj izolovanja oblika, preuzeto iz Figure Ground Perception, 2010.](image)

Drugi važan doprinos geštalte teorije je teza da prepoznavanje oblika ne zavisi od prirode elemenata. Na ovaj način je naznačeno da izučavanj oblika treba pristupiti drugačije nego ostalim karakteristikama slike i prostora, kao što su osvetljenost, transparentnost, boje, teksture i drugo (Pizlo 2008).

Pitanje koje se dalje nameće je zašto čovek vidi na slici to što vidi? Prvobitan odgovor je bio zato što čovek intuitivno teži da prepozna najjednostavniju strukturu (Koffka 1935). Međutim, takav odgovor inicira postavljanje novog pitanja: što je najjednostavnija struktura, odnosno potrebno je

6 Fejomen određenosti oblika svodi se na činjenicu da različite figure i tela mogu da sadržavaju istu sliku, u zavisnosti od ugla posmatranja

7 'I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have “327”? No. I have sky, house, and trees' (Wertheimer 1938)
jednoznačno definisati princip jednostavnosti

Generisanje računarskih i informacionih tehnologija i kibernetičkih sistema u drugoj polovini 20. veka dovodi do perioda 'kognitivne revolucije', kada se uobičavaju i ponovo razmatraju postojeće ideje o funkcionalanju vida i prepoznavanju oblika (Pizlo 2008). Istražena je primenljiva formula principa jednostavnosti (Hochberg i McAlister 1953) i uloga iskustva u prepoznavanju oblika (Hochberg i Brooks 1962)⁸.

C. Vidno polje je sve što vidimo kada otvorimo oči. Ukoliko gledamo jednim okom vidimo monokularno polje, a kada gledamo sa dvaoka vidimo binokularno vidno polje, odnosno koristimo mono ili stereo vid.

Pojam stereo vida dugo je izučavan, najviše u doba renesanse. Dela Porta (Giovanni Battista della Porta, 1538-1615) pravi binokularne crteže, a Kimenti (Jacopo Chimenti, 1554-1640) kreira stereo parove koje je postavio jedan pored drugog. Time je pokazao poznavanje binokularnog vida (Gruner 1977). Pojam "stéréoscopique" Dagijon u traktatu pominje 1613. godine (Francois d’Aquillon, 1567-1617) (Leggat 1997).

U prvoj polovini 19. veka Vetston (Charles Wheatstone) i Brauster (David Brewster) su značajno doprneli razvoju stereoskopije. Neznazivo jedan od drugog su u sličnom periodu došli do ideje da kreiraju stereoskop kao alat za prikaz steroskopskih slika (slike 2 i 3) (Blundell 2008; N. Wade 2005).

Najvažnija prekretnica koja je pažnju istraživača usmerila potpuno ka problemu binokularnog vida je otkriće tačkastih (random dot) stereograma (Julesz 1960) (slika 4). Činjenica da se prostor može preneti u perceptivni sistem bez postojanja kontura, ponovo je pokrenula razmišljanja da je binokularni vid primaran, ili čak dovoljan za percipiranje prostora.

Međutim, kasnija istraživanja su pokazala da binokularni vid, kao izolovan indikator dubine, čoveku često pruža netačne informacije o prostoru (Norman i drugi 1996). Ukoliko je monokularno prepoznavanje oblika tačno uspostavljeno, binokularna disperzija će doprneti prepoznavanju

⁸ Hohberg i Bruks su sproveli eksperiment u kojem je učestvovalo jedno dete. Od rođenja do 2. godine dete je koristilo trodimenzionalne igračke i učilo nazive figura i tela, ali nije dolazilo u kontakt sa dvodimenzionalnim slikama. Kada je navršilo 2. godine, detetu su pokazivane slike oblika i tela. Dete je bez problema tačno imenovalo pokazane predmete (Hochberg i Brooks 1962).
prostora, a ako ne postoji monokularni preduslov za izolovanje oblika, binokularna disperzija ne dodaje nikakav doprinos (Li i Pizlo 2005).

2.1.2 VEŠTAČKI VID

Stvaranje i razvoj kompjuterskog odnosno veštačkog vida oslanja se upravo na istraživanja ljudske percepcije. Razvoj teče u cilju što tačnije interpretacije slike na osnovu određenih softverskih algoritama (Wattenberg 1995; Shapiro i Stockman 2001).

Prvobitna istraživanja u domenu veštačkog vida bavila su se prepoznavanjem tela i figura, bez njihove tačne rekonstrukcije. Istraživanja se fokusirala na uprošćene izolovane probleme (Pizlo 2008). Razvijani su metodi za prepoznavanje jednostavnih poliedarskih struktura (Šiđanin 2001).

Iako je zanemari značaj izolovanja figura u Marovom istraživanju postojala ideja da modele treba posmatrati modularno, odnosno delove treba organizovati hijerarhijski prema
logičnom sklopu objekata (na primer, ljudska figura ima dve ruke noge, torzo i glavu; ako je prepoznat jedan deo, može se predvideti šta se nalazi na drugom delu modela) (Marr 1982) (slika 5).

Izolovanje oblika (figure-ground organisation) nakon duže pauze ponovo je uključeno u proces generisanja modela, tako što se modelovanju pristupa tek nakon izolovanja objekta na slici (Biederman 1987). Međutim, ispostavilo se da je u domenu veštačkog vida izolovanje oblika na slici veoma kompleksan problem.

Ideju prepoznavanja na osnovu delova (recognition by components ili RBC) razradio je Biderman, koji je utvrdio da se percepcija odvija raslojavanjem prostora na delove koje je nazvao 'geoni' (geons). Geoni su jednostavna tela: kocke, konusi, cilindri i lopte. On je zaključio da je nemogućnost shvatanja zaklonjenog (occolut) prostora primarni razlog zbog kojeg veštački vid ne prepozna komplesnska tela. Ljudi, u suprotnosti sa tim, mogu da predvide šta se nalazi na mestima koja se ne mogu sagledati (Biederman 1985). Kasnije, ovaj metod, primenjen na kompjutersko procesiranje jedne ili više realnih fotografija, pokazao se nedovoljno jednoznačnim za prepoznavanje oblika. Razlog je neodređenost upotrebljenih relacija, slično 'principu jednostavnosti' u geštalt teoriji.

Slika 5. Hijerarhijska organizacija delova (Marr 1982).

Kako su se i indikatori dubine i koncept veze celine i delova pokazali nedovoljni za praktičnu primenu veštačkog vida, u istraživanjima je nastavilo da se traga za novim pristupima. Poslednja izučavanja pokazuju da uvođenje uticaja relacija (constraints) u proces prepoznavanja oblika ima ključni značaj za tretman veštačkog vida (Pizlo 2008) (slika 6).

Istraživanja su vršena sa dva tipa relacija, lokalnim i globalnim. Lokalne relacije su korisne kod prepoznavanja površi jer se odnose na njihove segmente, i obuhvataju glatkoću (smothness), konveksnost (convexity) i nezakrivljenosti (straightness). Od globalnih relacija, koje se drugačije nazivaju i relacije oblika (shape constraint), najčešće su korišćene simetrija i koplanarnost. Najvažniji zaključak koji proizilazi iz svih ogleda i algoritama je da su za tačno prepoznavanje oblika eksplicitne...
relacije neophodne i od presudnog su značaja (Pizlo 2008; Cornou, Dhome i Sayd 2003b; Wilczkowiak 2004).

- Slika lampe (leva).
- Prepoznavanje zasebnih regiona na slici (u sredini) (Optica System), Dikinson i drugi, 1992. godina.
- 3D model lampe generisan povezivanjem regiona uz ograničavanje relacijama (desno).

Činjenica da čovek bez problema verodostojno shvata trodimenzionalnost prostornog okruženja, dok veštački vid nailazi na velike poteškoće u automatizaciji prepoznavanja oblika (slika 7) je podsticaj za istraživače oba domena da pokušaju da prevaziđu ovaj problem. Trenutno ne postoji sistem koji u potpunosti rešava ovaj nedostatak računarskog vida (Pizlo 2008). U ovom istraživanju su na nov način povezane prednosti veštačkog i prirodnog vida u jednom sistemu.

2.2 PERSPEKTIVNE SLIKE

Osobenost perspektivnog projiciranja, koja mu daje naročit značaj, je to što takav vid prezentacije prostora najviše odgovara načinu na koji ljudi percipiraju svet. I samo poreklo reči *Perspectiva* u latinskom jeziku označava ‘pogled kroz’. ‘Poreklo linearne perspektive je u svakodnevnom viđenju stvarnog sveta, a ipak se čini da proizilazi iz apstraktnih geometrijskih relacija’ (MacEvoy 2007).

Pojam perspektivne slike kod različitih autorima i u različitim periodima označavao je drugačije vidove projekcija (detaljnije u A. Stojaković (1970)). U ovom radu pod pojmom perspektivne slike podrazumeva se projekcija koja nastyje pro dorodom vidnih zrakova kroz projekcijsku ravan. Vidni zraci su prave koje sadrže jednu tačku na prostornoj strukturi i centar perspektive (slika 8).

Teorije perspektivnog projiciranja najviše su se koristile u slikestvu radi postizanja preciznosti i višeg stepena realnosti. Perspektivne projekcije, odnosno principi stvaranja mentalne slike prostora i prenošenja na druge tipove medijuma, dugo su bile predmet naučnih i umetničkih istraživanja (Panofsky 1927; Andersen 2007; Damisch 1994; Ivins Jr. 1946).

Najčešće korišćene perspektivne projekcije su one sa jedinstvenim centrom perspektive i ravnim površi slike. Novija istraživanja pokazuju da su se u slikarstvu koristili i složeniji metodi od linearne perspektive (Heuvel 1998; Rapp 2008). Kreirane su i perspektivne projekcije dobijene multiplikacijom centara perspektive i translacijom i rotacijom projekcijske ravn. Takvi pristupi detaljnije su razmotrjeni u odeljku 2.4.1 (Restitucija).

Razvoj konstrukcija perspektivnih slika odvijao se postepeno. Na osnovu postojeće literature i primera uočeno je da se izučavanja perspektive grupisu u nekoliko osnovnih pravaca:

- intuitivno korišćenje perspektive,
- istraživanje opšthih principa perspektivnog preslikavanja,
- rešavanje pojedinačnih slučajeva i problema i
- kreiranje mehaničkih pomagala za kreiranje perspektivne slike.

9 ‘Linear perspective originates in the common appearance of the real world, yet it seems to follow the abstract constraints of geometry.’ (MacEvoy 2007)
U doba antike poznato je da su postojale slike koje su prikazivale ‘prirodne’ perspektivne odnose. Pretpostavlja se da pravila za njihovo kreiranje nisu bila poznata, već da su se oslanjale na umetnikov osećaj za prostor (Blundell 2008) (slike 9 i 10).

Euklidova Optika je najranija sačuvana grčka rasprava o perspektivi i ujedno štivo koja ima veliki uticaj na evoluciju teorije perspektive.

‘Aksiom ugla’ 10, razmotren u toj knjizi, imače veliki uticaj na buduća proučavanja, naročito u renesansi. Njime je indirektno definisano da posmatranjem iz tačke, dužina duži koju posmatrač vidi

10 Aksiom ugla definisan je na sledeći način: ‘dužine u okviru većeg ugla izgledaju veće, u okviru manjeg manje a u okviru jednakog jednake’ (Euklid, citirano u Andersen (2007)).
nije realna već direktno zavisi od ugla (vidnog ugla) čiji kraci sadrže krajnje tačke duži a teme ugla je u centru perspektive. Prihvaćanjem ovog aksioma, primarni zadatak teorije perspektive je u početku bio interpretiran na sledeći način: kako konstruisati duž koja odgovara određenom vidnom ugлу a nalazi se u ravni crteža? Na buduću istraživanja u oblasti perspektivne veoma je uticala i Euklidova teorema koja dokazuje da se jednake duži na različitim delovima paralelnih linija vide kao različite dužine (Euklid, citirano u Andersen (2007)).

Antičko slikarstvo bilo je u funkciji ‘realizacije vidljivog sveta u okvirima naslikane kompozicije’, dok se u suprotnosti sa tim srednjovekovna hrišćanska umetnost nije interesovala za optički realizam, već za ‘simboličku celinu, koja je iznad profanih odnosa’ (A. Stojaković 1970).

Smatra se da je Doto (Giotto di Bondone, 1266/7 –1337) ponovo vratio ‘antička’ stremljenja ka realnom prikazu trodimenzionalnog prostora. Njegove slike nisu kreirane prema principima tačnih perspektivnih konstrukcija, ali se na njima uočava značajan napredak u odnosu na srednjovekovne interpretacije prostora (slika 14).

• Dučo di Buoninesnja (Duccio di Buoninsegna), Poslednja večera. 1310. godina (levo) (Panofsky 1927).
• Analiza preseka paralelnih linija tavanice (desno) (Andersen 2007).

Interesovanje za zakonitosti perspektive i kreiranja što realnih reprezentacija prostornog okruženja počinje intenzivno da se razvija u doba renesanse (MacEvoy 2007). Početkom 15. veka pojavljuju se veoma precizni perspektivni prikazi. Kako o načinu njihovog konstruisanja ne postoje pisani dokumenti, pretpostavlja se da su se oni u određenoj meri i dalje oslanjali na osećaj umetnika i na korišćenje dostupnih pomagala.

Verovatno je da su se jednostavna pomagala, u vidu mreže koja stoji ispred posmatrača, koristila za crtanje perspektivnih slika već u 14. veku. Osim ogledala kao pomoć pri crtanju perspektive koristio se pantograf (slika 17).

Paolo Učelo (Paolo Uccello, 1397 – 1475), takođe je kreirao veoma precizne perspektivne projekcije (slika 18), a nije pouzdano utvrđeno koji pristup je koristio. U njegovom delu vidi se težnja za izražavanjem perspektivnih deformacija, što nije u potpunosti korektno izvedeno (slika 19) (Solso 1994).

Slika 19. Analiza verodostajnosti perspektivnog razmeravanja na slici Bitka za San Romano, Učelo, (Paolo Uccello), 1438 – 1440. godina (Solso 1994).
- Bitka za San Romano, Učelo (gore).
- Detalj označen na prethodnoj slici (dole levo).
- Odnos visina čoveka sa slike (levo), i stvarne visine čoveka (dole desno) (Solso 1994).
Još jedan interesantan primer precizne slike i rešenja složenog perspektivnog problema je Mazačova (Masaccio, Tommaso di Giovanni Simone Guidi, 1401/2-1428/9) slika Svetog Trojstva na oltaru crkve Santa Maria Novela u Firenci. Slika prikazuje ‘lažni oltar’ simulirajući dubinu prostora za posmatrača koji stoji ispred njega (slika 20).

![Slika 20. Mazačova slika Svetog Trojstva na oltaru crkve Santa Maria Novela u Firenci.](image)

- Mazačova slika Svetog Trojstva (gore levo).
- 3D rekonstrukcija ‘simulirane 3D scne’ iz perspektivne slike (dole) (Criminisi, Kemp i Zisserman, 2007).

Leonardo da Vinči detaljno je ispitivao perspektivu, najviše metriku i proporcije. Bavio se i razmatranjem pitanja da li je linearna perspektivna projekcija idealna, što je dilema koja se pojavljuje uporedo sa razvojem teorije perspektive. Ukoliko se koristi camera obscura dobija se slika koja odgovara projekciji iz jedne tačke prostor na ravan. Iako je taj tip projekcije ono što se podrazumeva pod perspektivnom slikom, postavlja se pitanje da li je to ono što čovek vidi kada posmatra prostor.

Razvoj teorija perspektive i usložnjavanje praktičnih modela crtanja nije bio jednosmeran. Pojavljivale su se različite teorije i tendencije. Pojavljuju se i mnoge nepotpune i pogrešne studije. Neke iterativno bivaju popravljane ili dopunjavane. Na primer, Serlio je (Sebastiano Serlio, 1475-1554) u svojoj Knjizi o perspektivi (Libro di perspettiva) dao pregled dva metoda crtanja na osnovu kvadratnih mreža i ispravio neke Albertijeve konstrukcije.

Benedeti (Giovanni Battista Benedetti, 1530–1590) je razvijao opštije teorijske principe od svojih prethodnika, i to oslanjajući se na konstrukcije u tri dimenzije (Andersen 2007). I dalje, netačni zaključci i konstrukcije su se pojavljivali. De Fris (Vredeman de Vries, 1527 -1607), stavljao je sve tačke nedogleda na horizont, što je kasnije ispravio Marolua (Samuel Marolouis, 1572-1627) (slika 22).

Ren (Sir Christofer Wren, 1632-1723) je svoj izum za crtanje perspektivnih slika osmislio na idejnom principu pantografa. Lojold (Jakub Leupold, 1674-1727) je kreirao instrument za crtanje anamorfoza13 (slika 25). Kako se teorija usložnjava i broj metoda povećavao, tako je rasla i količina i raznovrsnost pomagala za crtanje perspektivnih projekcija.

12 Dürerov instrument namanjen je crtanju stvarnih objekata, a Jamnicerov koristi ortogonalne planove. Oba alata ograničena su time što se mogu konstruisati samo tačke, a objekt se prikazuje naknadnim povezivanjem tačaka.

13 Anamorfoze su specifične projekcije kod kojih se željena slika vidi samo pod određenim uglom ili uz korišćenje tačno pozicioniranog izvijenog ogledala.
Bitan doprinos matematičkom tumačenju perspektivnih principa dao je Del Monte (Guidobaldo del Monte, 1545-1607) koji je postavio koncept nedogleda koje je nazivao ‘tačke susreta’. Tek 1715. godine Tejlor (Brook Taylor, 1685-1731) je u potpunosti razjasnio pojam nedogleda i uveo i nedoglednice (Andersen 2007).

U 17. i početkom 18. veka osmišljavanje metoda za iscrtavanje određenih figura i tela postaje veoma popularno. Pojavljuje se široka serija štampanih materijala sa raznovrsnim ‘praktičnim uputstvima’ za crtanje perspektivnih slika. U tom periodu raste interesovanje za kreiranje anamorfoza (ravnih i cilindričnih) i sferičnih projekcija.

Teorija se nakon da Vinčijevih analiza veoma malo bavila razvojem metoda koji bi približili slikarsku perspektivu optičkoj. Venecijanski slikar i arhitekta Kosta (Giovanni Francesco Costa, 1747. godina – originalni pristup perspektivnom projiciranju (Andersen 2007).

Greške u određenim predloženim metodima (Andersen 2007) su nekad dalje preuzimane i modifikovane. Čak i u 18. veku Ferguson (James Ferguson, 1710-1776) kreirao pogrešne crteže, u kojima je koristio netačno određenu distancu, iako je problem postavljanja centra perspektive već uveliko bio utvrđen.

Polovinom 18. veka pod uticajem jasno i korektno postavljene teorijske baze, počinje nagli razvoj savremenih metoda perspektivnog projiciranja. Najveći doprinos ostvarili su Lamber (Johann Heinrich Lambert, 1728-1777) i Monž (Gaspard Monge, 1746-1818) koji je u potpunosti uobilio osnove izučavanja nacrtna geometrije i perspektive, iz čega su proistekli današnji pristupi (Rapp 2008). Lamber uspešno objašnjava vezu ortogonalne i perspektivne projekcije. Usavršio je i

![Slika 27. Lamber, perspektograf (preuzeto sa http://www.pointprojects.com/ 03.2011.).](image1)

![Slika 28. Monž, duž AB u prostoru sa zracima projiciranja na ravan MNLO (levo), pogled zdesna i pogled od gore, projekcije duži i prava veličina (desno), preuzeto od Mang, 1922.](image2)

Generisanje perspektivnih slika je sa razvojem fotografije i kasnije softvera za 3D modelovanje postalo veoma dostupno. Međutim, i dalje je za pravilno i usmereno korišćenje a posebno za razvoj savremenih sistema za 3D modelovanje neophodno poznavanje osobina perspektivnog projiciranja.

2.3 FOTOGRAFIJE

Fotografija je slika dobijena projecijom svetlosnih zrakova na ravan. Svetlosni zraci prolaze kroz optički centar foto aparata, a slika nastaje na foto osetljivoj površi. Reč fotografija potiče od grčkog *phos* (svetlost) i *grafe* (pisati), što najjasnije i opisuje suštinsku kreiranja fotografije. Termin 'fotografija' je prvi put upotrijebio Heršel (Sir John F.W. Herschel, 1792-1871) 1839. godine (Leggat 1997).

Idea o trajnim slikama prostora postoji i pre pojave fotografije. Prema Marjeni 1760. godine priča *Giphantie* autora Del Roša (Charles-Francois Tiphaine de la Roche, 1729-1774) je provođenje koje najavljuje pojavu fotografije (Marien 2006). Priča govori o iluzijama, slikama prirode i stvari.
Platno je ogledalo u kojem ostaju zarobljene sve refleksije sveta. Nakon što se osuše u tami, slike na platnu mogu da žive večno.

Preduslov za ostvarenje ove, kao i svih sličnih ideja, su tehničke mogućnosti. Razvoj pomoćnih sredstava neophodnih za kreiranje fotografije tekao je postepeno. Tehnologija koja je neophodna za razvoj fotografije usavršava se u okviru dva osnovna pravca:

- usavršavanje aparata za kreiranje fotografije
- usavršavanje tehnologije za kreiranje površine koja menja osobine usled osvetljenosti.

Najprostiji aparat za kreiranje perspektivne slike a i kasnije fotografije je pinhole camera (Abraben i Gold 1993; Leggat 1997), ili camera obscura odnosno mračna kutija ili soba (slika 29). Ovaj model je zapravo kutija (ili soba) sa jednim malim otvorom na središtu jedne strane. Napravljena je od materijala koji ne propušta svetlost. Svetlosni zraci prolaze kroz otvor i formiraju sliku prostora na suprotnoj strani kutije. Što je otvor manji, slika je oštrija ali tamnija. Mračna kutija je korišćena u početku kao pomoćni alat za crtanje perspektivnih slika, a kasnije i za dobijanje fotografije.

Istovremeno, foto osetljivi papir i kreiranje negativa na osnovu kojih se slike mogu reprodukovati u više kopija su počeli da se koristite u drugoj polovini 19 veka. Talbo (William Henry Fox Talbot,1800-1877) kreira slike korišćenjem negativa na papiru prethodno potopljenum u srebro hlorid i natrijum hlorid, a sliku (pozitiv) kreira ponovnim projiciranjem na drugi papir. Ovaj proces je nazvan kalotipija (calotype) ili talbotijpa. Polovinom 19. veka ideja 'crtanja svetlom' se intenzivno razvija. U Njijorku je 1850. godine bilo već 77 fotografskih galerija.

Arčer (Frederich Scott Archer, 1813-1857) je 1851. godine poboljšao proces stvaranja fotografije upotrebom kolodijuma i smanjio eksponažu na 3 sekunde. Iste godine Napoleon III i Odbor za očuvanje istorijskih spomenika Francuske organizuju Heliografsku misiju u cilju fotografisanja spomenika kulture (Matić 2011). Osnovni nedostatak fotografije u tom periodu je bio što se i dalje koristio mokri postupak, zbog čega se fotografija morala tretirati na licu mesta. 1879. godine Madoks (Richard Leach Madox, 1816-1902) razvija i suvi postupak, pa negativi ne moraju da se razvijaju odmah, te potreba za priručnim tamnim prostorijama za razvijanje fotografija nestaje. Kao posledica toga razdvajaju se profesije fotografa i izrađivača fotografija. U ovom periodu je proces apsorpcije svetla postao dovoljno kratak da omogući i pojavu ručnih foto aparata (Leggat 1997).

Istman (George Eastman, 1854-1932) 1884. godine uvodi filmove u rolni. Nekoliko godina kasnije se pojavljuju i foto aparati sa ugrađenim filmom. Pod sloganom ‘vi pritisnite dugme, mi čemo se pobrinuti za ostalo’ (slika 32) Istman i kompanija Kodak transformišu fotografiju u masovno rasprostranjen i pristupačan medijum (Kodak n.d.).

Najznačajnija prekretnica u razvoju fotografije je prelaz u oblast digitalne tehnologije. Prelaz sa analogne na digitalnu fotografiju tekao je postepeno. Komponente foto aparata su se menjale i usavršavale. Kada je kvalitet digitalne fotografije dostigao (i pri pojedinim uslovima i prestigao) kvalitet analogne fotografije, može se govoriti o potpunom prelazu na digitalne medijume.
Osnovna komponenta digitalnog foto aparata je senzor, koji je ekvivalent filmu analognog foto aparata. Senzor konvertuje optičku sliku u električni signal. I pre pojave prvih digitalnih foto aparata razvijali su se sekundarni elementi koji će postati osnova za kreiranje digitalnih aparata.

Prvi komercijalni digitalni foto aparati nastali su početkom devedesetih godina 20. veka. Nakon toga počinje eksplozivan razvoj digitalnih foto aparata i softvera za njihovu naknadnu obradu. Značajne prednosti digitalne fotografije su niska cena, fotografija je trenutno vidljiva, efikasna reprodukcija, fleksibilna obrada, mogućnost trenutne izmjene karakteristika senzora (na primer osetljivost (ISO)), stabilizacija pokreta (anti shake), kompaktan hardver i veza sa meta podacima svakog drugog tipa. Nedostaci digitalne fotografije su vezani sužen dinamički opseg, šum (zrno), aliasing i drugo. U skladu sa brzim razvojem digitalne fotografije i ovi nedostaci se sve više otklanjaju.

Elementi i osnovne karakteristike foto aparata utiču na osobine fotografije koja će biti korišćena u procesu generisanja prostora. Udaljavanjem/približavanjem optičkog centra u odnosu na ravan slike (promenom žižne daljine), dobijaju se različite perspektivne projekcije prostora.
Slika 33. Vidni ugao kod različitih tipova objektiva (Cook 1989)

- Normalan (gore).
- Širokougaoni (u sredini).
- Tele (dole).

Što je žična daljina manja, prostor koji je obuhvaćen je veći i obrnuto. Objektivi koji imaju malu žičnu daljinu nazivaju se širokougaoni, a koji imaju veliku žičnu daljinu teleobjektivi (slika 33). Perspektivne deformacije su izraženije što je žična daljina manja. Sa povećanjem žične daljine smanjuje se količina svetlosti koja ulazi u foto aparat i produžava se trajanje eksponaže. Zbog toga se pri lošim svetlosnim uslovima kod fotografija slikanih bez korišćenja stabilnog oslonca može pojaviti zamućenje usled pomeranja foto aparata.

Kvalitet fotografije zavisi od uslova snimanja i performansi foto aparata. Fotografije koje se koriste u procesu generisanja prostora treba da budu što višeg kvaliteta. Važno je postići da bude što manje odstupanja od idealne perspektivne projekcije.

Kod *pinhole* modela sočivo ne postoji, pa ne postoje ni deformacije ovakve slike. Dakle, fotografija koja se dobija korišćenjem ovog modela foto aparata je istovetna perspektivnoj slici prostora. Svi ostali tipovi foto aparata sadrže sočivo, odnosno niz sočiva (slika 34). Svako sočivo prelampa svetlosne zrake tako da finalna projekcija bude što sličnija perspektivnoj slici prostora.

Što je žična daljina manja, prostor koji je obuhvaćen je veći i obrnuto. Objektivi koji imaju malu žičnu daljinu nazivaju se širokougaoni, a koji imaju veliku žičnu daljinu teleobjektivi (slika 33). Perspektivne deformacije su izraženije što je žična daljina manja. Sa povećanjem žične daljine smanjuje se količina svetlosti koja ulazi u foto aparat i produžava se trajanje eksponaže. Zbog toga se pri lošim svetlosnim uslovima kod fotografija slikanih bez korišćenja stabilnog oslonca može pojaviti zamućenje usled pomeranja foto aparata.

Kvalitet fotografije zavisi od uslova snimanja i performansi foto aparata. Fotografije koje se koriste u procesu generisanja prostora treba da budu što višeg kvaliteta. Važno je postići da bude što manje odstupanja od idealne perspektivne projekcije.

Kod *pinhole* modela sočivo ne postoji, pa ne postoje ni deformacije ovakve slike. Dakle, fotografija koja se dobija korišćenjem ovog modela foto aparata je istovetna perspektivnoj slici prostora. Svi ostali tipovi foto aparata sadrže sočivo, odnosno niz sočiva (slika 34). Svako sočivo prelampa svetlosne zrake tako da finalna projekcija bude što sličnija perspektivnoj slici prostora.
Kao posledica tehničke nesavršenosti, pri snimanju amaterskim foto aparatima, mogu se pojaviti određene nepravilnosti na fotografijama\(^{15}\). Za ovo istraživanje bitna su odstupanja fotografije u odnosu na perspektivnu sliku, odnosno distorzije. Postoji nekoliko osnovnih tipova odstupanja, kao što su pomeraj projekcije centra perspektive, deformacija piksela i distorzija sočiva.

Prema pravilima perspektivnog projiciranja projekcija centra perspektive na ravan slike, glavna tačka (principal point), bi trebalo da se nalazi na sredini fotografije. Kod realnih fotografija ova projekcija je uglavnom pomerena u odnosu na idealnu projekciju, što dovodi do deformacije koja se naziva pomeraj glavne tačke (principal point offset) (Morvan 2009; Hartley i Zisserman 2000; Clarke, Wang i Fryer 2003).

Da je svaki piksel (pixels) na senzoru kvadratnog oblika, fotografija bi odgovarala pravilnoj perspektivnoj slici. U realnim slučajevima, pikseli nisu kvadratni (non-square pixels), već su deformisani na dva načina. Tek kada se uzmu u obzir smicanje (skew) i nepravilnost proporcije (aspect ratio) moguće je analizirati stvarnu fotografiju (slika 35) (Morvan 2009). Bez obzira što se ove deformacije vezuju za senzor, one se mogu pojaviti i na analognim fotografijama u toku obrade i razvijanja filma.

Radialna distorzija slike (slika 36) nastaje usled prelamanja zraka kroz sočivo (non-linear lens distortion). Na fotografiju je izražena proporcionalno intenzitetu perspektivne deformacije. Ove deformacije su veoma upadljive i najveći problem se javlja kod sla snimljenih širokougaonim objektivima.

Distorzija fotografije u sistemima za generisanje prostora bitno umanjuje preciznost modela. Kod savremenih foto aparatima deformacije fotografije mogu biti ispravljene korišćenjem adekvatnih aplikacija, a kod istorijskih fotografija, gde nisu poznate performanse korišćenog foto aparata, deformacije se popravljaju naknadno. Ovi postupci su detaljnije objašnjeni u narednim odeljcima.

 Najznačajnija prednost digitalne fotografije za dokumentovanje prostornih podataka je njena svakodnevna prisutnost i velika dostupnost. Fotografisanje objekta je brzo, jednostavno i efikasno. Osim toga, razmena podataka je trenutna i potpuna. Uz fotografiju su zabeleženi i podaci o foto aparatu i podešavanjima u trenutku snimanja, a kod novijih foto aparata i GPS lokacija fotografa u trenutku snimanja. Zbog navedenih prednosti uloga fotografije i sistema za modelovanje na osnovu perspektivnih slika je sve veća u oblasti graditeljskog nasleđa.

\(^{15}\) U zavisnosti od optičkog kvaliteta sočiva na slici se mogu pojaviti zamućenja (blur), smanjen kontrast, hromatska aberacija, vinjetiranje i distorzija.
2.4 RAZVOJ GENERISANJA PROSTORA NA OSNOVU PERSPEKTIVNIH SLIKA

2.4.1 RESTITUCIJA

Restitucija (modeling from a single image) je pogodna ukoliko postoji dovoljno poznatih činjenica ili pouzdanih pretpostavki o geometriji prikazanog prostora (Grussenmeyer, Hanke i Streilein 2002). Razmatranje razvoja restitucije nema smisla pre utvrđenih principa tačne slikarske perspektive. Stoga njen razvoj počinje u doba renesanse.

Početak ispitivanja restitucije vezan je za pitanje kako postaviti posmatrača slike u idealan položaj i kako izmeriti objekte na već nacrtnoj slici. Leonardo da Vinči postavio je problem rekonstrukcije položaja centra perspektive na osnovu perspektivnog crteža koji se u literaturi pominje kao ‘inverzni problem u perspektivi’. Pre 18. veka, uglavnom su razmatrani pojedinačni slučajevi i to u dve kategorije, koje su i dalje suštinski problemi veze prostora i slike. Ti problemi ispituju kako:

- na osnovu figure na slici pronaći položaj centra perspektive (glavnu tačku i distanciju) ili
- na osnovu centra perspektive pronaći prave dimenzije objekata na slici.

Del Monte (Guidobaldo del Monte, 1545 - 1607) je u svojim primerima dotakao obe navedene teme, ali samo u jednostavnim specijalnim slučajevima. Piero dela Frančeska je razmatrao problem kako na postojećoj slici konstruisati kvadrat ukoliko je poznata proporcija strana jednog pravougaonika. Kada je razmatrao isti problem, ali ako je nepoznata proporcija stranica, prvo je morao pronaći distanciju oka (Andersen 2007), što je zapravo indirektna restitucija. Distanca u ovim prvim analizama je uglavnom bila vezana za nedogled ‘dijagonala’ (prave pod 45º u odnosu na ravan slike), pre nego za konstrukciju položaja centra perspektive.

Stevin je osmislilo dve procedure koje rešavaju ‘inverzni problem u perspektivi’ od kojih je jednu nazvao ‘matematička’ a drugu ‘mehanička’. Cilj mu je bio povezivanje oborene i perspektivne projekcije tačke, korišćenjem položaja centra perspektive, a pretpostavke su bile vezane za poznavanje horizonta, nedogleda na njemu i figura u horizontalnim ravnima.

Lamber se opširnije bavio problemom restitucije (Rapp 2008), mada se ograničio na slike sa nedogledom vertikala u beskonačnosti. Razvio je princip resekcije, odnosno konstruisanja mesta posmatrača perspektivne slike (Burcht 2008). On je analizirao šest specifičnih primera kao što su konstrukcija oborenog centra perspektive na osnovu datog horizontalnog kvadrata ili na osnovu dve duži sa zajedničkom tačkom, poznatog odnosa dužina, na istoj horizontalnoj pravoj i poznatog horizonta. Kod nekih je uspeo da konstruiše projekciju centre perspektive i distanciju, a tamo gde je to nemoguće, primere je ostavio delimično nedovršene (Andersen 2007; Rapp 2008).

Rešavanje većine karakterističnih primera je razrađeno do kraja 18. veka i konstatovano je da ne postoji univerzalno pravilo za pronalaženje položaja centra perspektive i veličina na svakoj perspektivnoj slici.

Metrički problemi restitucije u savremenim istraživanjima najviše su zatupljeni u cilju ispitivanja tema istorije umetnosti. Slike i crteži nastali korišćenjem tačnih pravila perspektivnog projiciranja se mogu restituisati (Hartley i Zisserman 2000; Rapp 2008), iako se primena restitucije najčešće vezuje za fotografije. Ispitivanje slikanih i crtanih prostora i pristupa koje su umetnici koristili ukazuje na domete i ideologije prošlog vremena i čini značajan epistemološki doprinos.

Na primeru slike iz 17. veka autora Fon Štinejka (Hendrick van Steenwijck, 1580-1649) (slika 39), prikazana je restitucija korišćenjem softvera. Generisan je 3D model i ekspoftovan su renderi prikazanog enterijera iz drugih tačaka posmatranja (slika 40). Renderi 3D modela sobe iz drugog ugla kreirani upotrebom restitucije (rad Antonio Criminisi, preuzeto iz Hartley i Zisserman (2000)).

Nova saznanja u oblasti umetnosti u vezi sa slikarskom perspektivom se otkrivaju korišćenjem metoda restitucije. Pouzdani zaključci o tome koje konstrukcije su slikari koristili za prikaz prostora donose se korišćenjem metode manuelnog ili softverskog restituisanja slike.
Na slici 41 je prikazana restitucija Piranezijeve (Giovanni Battista Piranesi, 1720-1788) slike Ponte Fabrizio (Quattro Cappi). Rapova\(^{16}\) (Rapp 2008) je detaljnom analizom i upotrebom restitucije pokazala da je Piranezi pri konstrukciji ove i drugih slika koristio metod perspektivnog projiciranja iz nekoliko različitih centara perspektive i složene principe proporcionalisanja radi njihovog povezivanja.

Multiperspektivne projekcije su slike kod kojih se centar perspektive pomera duž određene putanje, slično pomeranju čoveka koji posmatra prostor. Prednost ovakvih projekcija je kreiranje prirodne iluzije pri širokom vidnom uglu. Ukoliko se pri takvom uglu koristi linearno projiciranje pojavljuju se izražene perspektivne deformacije naročito na perifernim delovima slike. Ovo je naročito upadljivo kada se u uglu nalaze sferični objekti ili ljudi i/ili njihova lica.

Još jedan način provere postupka kreiranja slike je iterativno korišćenjem računara, odnosno upotreba virtualne kamere. Na primer, modelovanjem trga Neumarkt u Drezdenu i poznavanjem približne pozicije slikara, poredenjem rendera sa različitim brojem centara perspektive, pokazano je da je slikar koristio multiperspektivne projekcije (slika 42) (Ingmar 2008).
Generisanje digitalnih modela sa ciljem restitucije prostornih struktura detaljnije je prikazan u odeljku 2.5.1.1.

Slika 41. Analiza Piranezijeve slike Ponte Fabrizio 1765. godina (Rapp 2008).
- Dovani Batista Piranezi, Most Fabricio (gore).
- Uklapanje projekcija iz dva centra perspektive \(O_1 \) i \(O_2 \) (dole levo).
- Finalni rezultat, tri projekcijske ravni i položaji centara perspektive konstruisani u osnovi (dole desno).
Slika 42. Slika kreirana korišćenjem više centara perspektive da bi se postigao prirodniji prikaz i umanjila deformacija kupole (Ingmar 2008).

- Najmarkt (Neumarkt) u Drezdenu, pogled iz Morizstrasse (Moritzstraße). Kanatelo (Canaletto), 1751 godina (gore).
- Kompjuterska 3D reprodukcija prostora sa slike, linearna perspektiva (Groh, 2005), (u sredini levo), preuzeto od Ingmar, 2008.
- Kompjuterska 3D reprodukcija prostora sa slike, multiperspektivni render (u sredini desno), preuzeto od Ingmar, 2008.
- Perspektivni prikaz, korišćenjem jednog centra perspektive (dole levo).
- Perspektivni prikaz, korišćenjem tri centra perspektive (dole desno).
2.4.2 FOTOGRAMETRIJA

Fotogrametrija je postupak procesiranja fotografija kojim se dobijaju prostorne dimenzije, oblik i pozicija prostorne strukture realnog sveta (Grussenmeyer, Hanke i Streilein 2002). Termin ‘fotogrametrija’ počinje da se koristi polovinom 19. veka. Danas se pod fotogramerijom podrazumeva modelovanje na osnovu više slika, iako je termin fotogrametrija složenica koja je izvedena iz sintagme ‘merenje sa slike’. 17

Slika 44. Porov fotogoniometro, preuzeto sa http://www.lombardiabeniculturali.it, 03.2011.

17 Tačniji naziv za ono što se danas naziva fotogrametrijom je stereofotogrametrija. Stereofotogrametrija podrazumeva postojanje bar dve fotografije istog objekta. Kada se kaže fotogrametrija, pri tome nije precizirano koliko slika postoji.

Ipak, vremenom se značajne reči izmenilo i u današnjim istraživanjima je uobičajeno da se za generisanje prostora sa više slika koristi naziv fotografometrija, a za generisanje sa jedne slike, restitucija, što je upotrebljeno i u ovom radu.

18 Nadarove fotografije će kasnije biti korišćene i za mapiranje, najviše u vojne svrhe.
Razvoj fotogrametrije od optičkih i mehaničkih alata do potpuno digitalizovanog procesa traje više od jednog veka (Linder 2006). Fotogrametrija se razvija u nekoliko različitih pravaca (D. Li 1992), uslovljenih pratećim tehnološkim dostignućima:

- analogna fotogrametrija, počinje da se razvija na prelazu iz 19. u 20. vek,
- analitička fotogrametrija, počinje da se razvija u drugoj polovini 20. veka i
- digitalna fotogrametrija, počinje da se razvija krajem 20. veka.

1997). Prva fotogrametrijska snimanja podrazumevala su skupe metričke foto aparate\(^{20}\) sa poznatim fiksnim parametrima, što je još jedan razlog zašto je upotreba fotogrametrije bila primarno vezana za kartografiju, a retko za snimanje objekata (Grussenmeyer, Hanke i Streilein 2002).

Abbildung 7.

Slika 46. Majdenbajerov plan fotogrametrijskog snimanja objekta, preuzeto od Burch, 2008.

Razvoj analogne fotogrametrije podstaknut je ubrzanim korišćenjem stereoskopije i konstrukcijom aviona početkom 20. veka. Prvi instrumenti i metodi koji su služili za fotogrametrijsku konstrukciju, najčešće za mapiranje, bili su veoma komplikovani i teški za korišćenje.

U ovom periodu osmišljeni su i proizvedeni brojni instrumenti koji koriste princip fotogrametrije radi pružanja informacija o prikazanom prostoru. U Austriji su Haferl (Franz Haferl) i

\(^{20}\) Razlika između amaterskog i metričkog foto aparata je što metrički foto aparat ima poznate unutrašnje parametre, automatsku kalibraciju, fiducijalni referentni sistem, regulatore položaja i stabilizaciju (Short 1992).
Maurer (Maurer) 1887. godine za potrebe vodoprivrede i gradnje puteva izradili fotogrametrijski uređaj, fotogrametar (photogrammetrar) (Kraus 1982). Devil (Édouard Deville, 1849 - 1924), je osmislio 'stereo planigraf' (slika 47). Ovaj uređaj je koristio preklopljene stereo parove fotografija ali je bio previše komplikovan za širu upotrebu.

Tokom 20. veka optičko mehaničke firme razvijale su i donosile na tržište sve bolje instrumente za fotogrametrijsko snimanje (Kraus 1982). Firma Cajs (Zeiss), gde je bila zaposlena većina vodećih istraživača22, je dominirala proizvodnjom fotogrametrijske opreme u prvoj polovini 20. veka (Burtch 2008). Polovinom 20. veka nastavlja se usavršavanje ideje o merenju i mapiranju na osnovu analogne obrade fotografija i pojavljuje se niz složenih uređaja za akviziciju i procesiranje podataka i reprezentaciju rezultata (detaljnije u Burtch (2008)).

- Stereo planigraf (gore).
- Metod 'mreže' koji je koristio (dole).

Slika 48. Orel, autostereograf, preuzeto od Burtch, 2008.

21 Optičke osa foto aparata u truncima snimanja su morale da budu paralelne, i parametri foto aparata da budu isti.

22 Na primer Von Orel, Pulfrich, Walter Bauersfeld, Willi Sandor, von Gruber (Collier 2002).

Finstervalder (Sebastian Finsterwalder, 1862-1951) 1899. godine je počeo objavljivanje radova koji opisuju principe današnje fotogrametrije i načina orijentacije (Doyle 1964). Fon Gruber (Otto von Gruber, 1884 - 1942) je postavio jednačine za prostornu orijentaciju na osnovu šest tačaka, koji se koristi i danas. Čerč (Earl Church, 1890 - 1956) je takođe postavio sistem za proračun prostorne resekcije, ali koji nije uključivao nikakvu dodatnu provezu, zbog čega se ovaj proračun pokazao neprimenljiv na realne fotografije. Slične probleme ali sa detaljnijim pristupom, polovinom 20. veka, obradio je Merit (Everett Merritt).

Sa razvojem prvih računara polovinom 20. veka, analitička fotogrametrija se ubrzano razvija i usmerena je ka problemima koji su aktuelni danas, kao što su orijentacija, kalibracija, triangulacija i procena greške. Oblast digitalne fotogrametrije spada u domen savremenih postupaka za generisanje prostora, te je detaljno razmotrena u odeljku 2.5.1.2.

\(^{23}\) 'The calculation of resection in space, either by the direct or differential method, is merely waste of time and is of minor practical importance'. (Doyle 1964)
2.4.3 3D MODELOVANJE

3D modelovanje je kreiranje trodimenzionalnog modela koji reprezentuje stvarnu ili zamišljujuju prostornu strukturu. ‘Ako čoveku kažemo da opiše objekat, on će taj problem rešiti tako što će opisati sve jednostavne komponente objekta sa svim njihovim atributima i karakteristikama i njihovim relacijama (međusobnim i prema objektu). Principi računarske reprezentacije i modelovanja nisu ništa drugo nego analogni prikaz objekta, osim što je ljudski jezik zamenjen matematičkim metodama.24 (Grussenmeyer, Hanke i Streilein 2002). Informacije zapisane u bazi podataka putem odgovarajućih algoritama transformišu se u digitalnu reprezentaciju objekta, odnosno model (Grussenmeyer, Hanke i Streilein 2002).

24 ‘If a person is asked to describe an object, he/she solves the problem typically by describing all the single components of the object with all their attributes and properties and the relations they have with respect to each other and to the object. In principle computer representations and models are nothing else than the analogue description of the object, only the human language is replaced by mathematical methods’ (Grussenmeyer, Hanke i Streilein 2002)
principe postavio je u okviru svoje doktorske disertacije. Ulazni podaci unosili su se olovkom, i iako je ovaj proces trajao veoma dugo, ideja je opstala u potrebi i danas. Prvi CAD programi su mogli da prikazuju linije i jednostavne figure, prvo u 2D, a kasnije i u 3D koordinatnim sistemima. Tačan period prelaza sa isključivo 2D na 3D aplikacije nije utvrđen (Weisberg 2008)

U periodu ranog razvoja CAD sistema, ni hardver ni softver računara nisu bili prilagođeni za komercijalnu upotrebu. Interes za razvoj komercijalnih CAD paketa raste sedamdesetih godina dvadesetog veka. U tom periodu razvijaju se velike kompanije zainteresovane za razvoj CAD paketa. Jedan od najpoznatijih 2D CAD programa, bio je CADAM (Computer Augmented Drafting and Manufacturing), kojeg je razvila Lockheed avio kompanija. Ovaj softver je oko 1975. godine otkupljen od strane proizvođača aviona (Avions Marcel Dassault), razvijan i nadograđen kao 3D CAD paket pod imenom CATIA (Computer Aided Three Dimensional Interactive Application), koji se i danas koristi (slike 52 i 53).

Slika 52. CATIA, 1983. godine, fotografija monitora, preuzeto sa http://www.eng-tips.com/forum, 02.2011.

Slika 53. CATIA V5, preuzeto sa http://www.deskeng.com, 02.2011.

Doprinos koji je takođe bitna podloga za razvoj složenijih CAD programa je razvoj pristupa analitičkom zapisu kompleksnih površi i prostornih krivih. Istraživanja Kastelja (Paul de Casteljau) i Bezijera (Pierre Étienne Bézier) šezdesetih godina su pružili osnovu aktuelnom modelovanju slobodnih formi. Ovi pristupi su usavršani, a u doktorskoj disertaciji 1975. godine Vesprije (Ken Versprille) uvodi NURBS krive. Ovi algoritmi uz određena poboljšanja se koriste i danas.

Do kraja dvadesetog veka, broj i brzina razvoja CAD aplikacija drastično raste. Kreiraju se programi sa različitim pristupima modelovanju, povećava se brzina i količina opcija i usavršava se nivo grafičkog kvaliteta. Danas postoje brojni sistemi za 3D modelovanje, koji se i dalje veoma brzo menjaju i razvijaju. Prikaz i analiza postojećih postupaka za 3D modelovanje dat je u odeljku 2.5.1.3.
2.5 PREGLED POSTOJEĆIH METOĐA
ZA GENERISANJE DIGITALNIH PROSTORNIH
MODELJA ARHITEKTONSKIH OBJEKATA

U zavisnosti od zahteva u vezi sa automatizacijom, nivoom preciznosti, realizmom u
reprezentaciji, detaljima, lažnom obrade, efikasnošću i ekonomičnosti i fleksibilnošću ponekad je
teško odabrati adekvatan pristup za generisanje digitalnih prostornih modela (Remondino / El-Hakim
2006). Najčešće, jedan pristup ne zadovoljava sve zahteve i najbolje rezultate pruža kombinovanje

Digitalizacija graditeljskog nasleđa je veoma aktuelna poslednjih godina, zbog svojih
nesumnjivih prednosti. U procesu virtualnog rekonstruisanja arhitektonskih prostornih struktura
mogu se razdvojiti dva osnovna tipa generisanja prostora. Metode prostorne digitalizacije
graditeljskog nasleđa će se u potpunosti razlikovati u zavisnosti od toga da li:

- objekat ne postoji ili
- objekat postoji.

Ukoliko objekat (ili njegov segment) ne postoji, fotografije su najpouzdaniji izvor prostornih
podataka o nepostojećim objektima (ukoliko ne postoji tehnička dokumentacija)25. U tom slučaju
retko su dostupne fotografije koje čine pogodan niz za primenu fotogrametrije. Digitalno generisanje
prostora na osnovu jedne slike tada se vrši principom restitucije. Što je prikaz precizniji i detaljniji to
će pouzdanost modela biti veća. Dvodimenzionalni medijumi na kojima je dokumentovan određeni
objekat imaju ograničen (češto nizak) kvalitet. Na fotografiji je vidljiva je samo segment objekta koji
je okrenut prema foto aparat, a deo objekta može biti zaklonjen drugim objektima. Stoga,
prostorna digitalizacija na osnovu fotografija pruža najbolje rezultate.

Pri snimanju postojećih objekata graditeljskog nasleđa digitalizacija objekata je složenija. U
opticu su mnoge metode, od kojih je potrebno odabrati optimalnu kombinaciju. Najčešće se
koriste sledeće metode (Pavlidis i drugi 2007):

- empirijska ili direktna metoda,
- topografske i geodetske metode,
- fotogrametrija i
- lasersko skeniranje.

Empirijska ili direktna metoda podrazumeva merenje karakterističnih veličina na objektu, i
naknadno kreiranje modela na osnovu izmerenih dimenzija. Ovaj pristup ne zahteva skupu tehničku
opremu, ali zahteva mnogo terenskog rada, što bitno utiče na efikasnost snimanja. Metod je
precizan za jednostavne i jasne oblike i pristupačne objekte, ali je veoma nezahvalan za beleženje
geometrije skulptura, plastičnih ukusa i drugih slobodnih formi (slika 54).

Topografske i geodetske metode podrazumevaju opremu visokog kvaliteta kojom je
omogućeno veoma precizno merenje dužina i uglova između totalne stanice26 i objekta. Podaci su
automatski zabeleženi u 3D koordinatnom sistemu, što olakšava obradu podataka. Potrebno je

25 Izvori koji prikazuju izgled graditeljskog nasleđa su: fotografije, umetničke slike i crteži, bakorezi,
duborezi i gravire (Nenadović 1980).
26 Totalna stanica je elektronski teodolit.
mnogo terenskog rada. Ovaj metod je idealan za nepristupačne objekte koji treba da budu snimljeni sa visokom preciznošću (slika 55).

Fotogrametria je metod modelovanja na osnovu fotografija. Za ovaj metod je potrebno malo terenskog rada. Metod je pristupačan i finansijski povoljan. Stručnost potrebna za obradu podataka zavisi od pristupa i zahteva projekta. Preciznost modela varira u zavisnosti od kvaliteta aparata i softvera koji se koriste, kao i od uslova snimanja (slika 56).
Laserski skener funkcioniše slično kao totalna stanica, osim što se merenje vrši automatski. Skener šalje mnogo zrakova i beleži položaj svake tačke. Model se kreira na osnovu obrade oblaka tačaka. Modeli su veoma precizni, terenski rad je sведен na minimum, ali je obrada podataka zahtevna i oprema je veoma skupa. Laserski skeneri idealni su za snimanje skulptura i drugih kompleksnih površi (slika 57).

Slika 57. Lasersko skeniranje, oblak tačaka (Courtesy Center for Design Visualization, UC Berkeley, preuzeto od Addison, 2007.

Digitalni prostorni modeli mogu biti kreirani i zapisani na različite načine (Cory i Bozell 2001). Osnovni i suštinski različiti tipovi modelovanja su:

- modelovanje jednostavnim telima,
- poligonalno modelovanje i
- modelovanje korišćenjem krivih

Modelovanje jednostavnim telima (*primitives*) (slika 58) svodi se na modelovanje prethodno definisanim poligonalnim modelima kao što su kocka, lopta, cilindar, konus ili ravne figure (Slika 58) (S. El-Hakim 2000). Kreiranje modela vrši se modifikovanjem tela koja su uvedena kao blokovi. Poligonalno modelovanje (*poligonal modeling*) (slika 59) je kreiranje mreže trouglova (*mesh*) između zadatih tačaka i duži. Ovaj pristup koristi se za kreiranje slobodnih formi. Modeli slobodnih formi i glatkih površi mogu se generisati i korišćenjem krivih (*Spline* ili *NURBS*)27 (slika 60).

Izbor adekvatnog pristupa modelovanju zavisi od ulaznih podataka, osobina strukture koju je potrebno modelovati i mogućnosti softvera koji se koristiza modelovanje.

27 *Spline* je tip Bezijerove krive, a NURBS (*Non-uniform rational basis spline*) je kriva koja se oblikuje težinskim faktorima.
2.5.1 GENERISANJE PROSTORNIH MODELA NA OSNOVU PERSPEKTIVNIH SLIKA

U ovom radu izučavano je generisanje prostornih modela na osnovu perspektivnih slika, odnosno fotografija28. Time je obuhvaćeno modelovanje nepostojećih objekata sa istorijskih

\begin{itemize}
 \item 28 U savremenim istraživanjima generisanja prostornih modela na osnovu slika mogu se uočiti dva pristupa. Jedan čine izučavanja pojedinačnih problema radi poboljšanja određene procedure koja se koristi pri kreiranju modela. Ovakva istraživanja mogu se pronaći u okviru aktuelnih načnih radova. Drugi čine sistemski
\end{itemize}
fotografija i fotogrametrijsko modelovanje postojećih objekata. Osnovni razlog za izbor ovog pristupa je njegova efikasnost, ekonomičnost i dostupnost. Na područjima u kojima su ulaganja u očuvanje, zaštitu i snimanje objekata graditeljskog nasleda niska, propadanje objekta je često. Modelovanje na osnovu fotografija u takvim okolnostima ima poseban značaj.

Stoga se detaljniji pregled postojećih sistema odnosi na generisanja digitalnih prostornih modela na osnovu perspektivnih slika. Sistemi za generisanje prostora na osnovu perspektivnih slika (image based modeling ili IBM) (Remondino / El-Hakim 2006) bave se širokim spektrom istraživanja vizuelnih indikatora koji povezuju sliku i prostor.

Iako se potpuna procedura generisanja prostora na osnovu slika razlikuje u zavisnosti od polaznih faktora i ciljeva primene, uopšteno se sastoji iz dve osnovne faze:

- orijentacije, što podrazumeva detekciju parametara foto aparata, odnosno slike i
- strukturalizacije i modelovanja prostora koji je na slici prikazan.

Parametri foto aparata mogu biti poznati ili nepoznati. U zavisnosti od toga razvijaju se različiti sistemi za generisanje prostora na osnovu slika (Remondino / El-Hakim 2006). Određivanje parametara foto aparata podrazumeva dve vrste orijentacija:

- spoljašnju
- unutrašnju.

Spoljašnja orijentacija je određivanje položaja foto aparata u zadatom koordinatnom sistemu. Ona se može iskazati parametrima foto aparata ili parametrima slike. Parametri foto aparata izražavaju položaj optičkog centra i rotaciju optičke ose, a parametri slike izražavaju položaj slike i rotaciju ravni u kojoj je slika. U oba slučaja šest konstanti definiše položaj i rotaciju foto aparata ili slike.

Unutrašnja orijentacija foto aparata podrazumeva određivanje distancije (žižne daljine) i koeficijent polinoma koji ispravlja distorzije (kalibraciju) (Grussenmeyer, Hanke i Streilein 2002). Očitavanje ili detekcija distorzije je neophodna, jer ona povezuje ravan fotografije sa centrom perspektive. Uklanjanje distorzija nije neophodno, ali bitno utiče na preciznost. U ovom radu distorzije neće biti uzete u obzir.

Strukturalizacija i modelovanje prostora prikazanog na slici je kreiranje mape dubina (depth map). Ona se svodi na problem kako i na koji način svakom pikselu dodeliti određenu udaljenost od

pristupi generisanju prostora koji najčešće prethode kreiranju softverske aplikacije. Takva istraživanja uglavnom nisu dostupna za javnost, te se teorijska ideja može studirati jedino kroz upotrebu softvera.

Zbog toga je u ovom radu analiza postojećih metoda za generisanje digitalnih prostornih modela na osnovu slika izvršena izučavanjem naučnih radova koji se bave pojedinačnim problemima i kritičkom primenom komercijalnog softvera.

29 Ti indikatori su elementi tela, konture, simetrija, senke, teksture, pokret i drugo.
30 Foto aparat može da bude kalibriran prethodno (pod uslovom da se zna žižna daljina pri slikanju) ili naknadno (Wöhrer 2009).

Za ispravljanje deformacija fotografije najbolja je potpuna prethodna kalibracija, na osnovu poznate žižne daljine, naročito ako je naknadna kalibracija nemoguća ili nepouzdana. Ako su slike slikane sa različitim (poznatim) žižnim daljinama, preporučuje se upotreba dvodimenzionalne ravni za testiranje (2D test field) radi poboljšanja tačnosti kalibracije (Remondino i El-Hakim 2006; Grussenmeyer, Hanke i Streilein 2002).

Naknadna kalibracija (self-calibratin) koristi se ako je nepoznata žižna daljina korišćena pri slikanju. Naknadna kalibracija je pogodna kod slika na kojima se nalazi mnogo prepoznatljivih tačaka koje su ravnomerno raspoređene u prostoru.

55
ravni fotografije (Remondino i El-Hakim 2006). Položaj određene tačke u prostoru može se dobiti presekom dva ili više vidnih zrakova, ukoliko je tačka vidljiva na dve ili više fotografija, ili presecanjem jednog zraka sa nekom poznatom površi ili pravcem ukoliko je tačka vidljiva samo na jednoj fotografiji (Grussenmeyer, Hanke i Streilein 2002).

Modelovanje podrazumeva generisanje matematičkog modela prostora u određenom koordinatnom sistemu. Radi stvaranja modela koji sadrže više podataka o stanju objekta i veći stepen realizma, u fazu modelovanja se najčešće uključuje i teksturizacija, odnosno mapiranje. Time je digitalni trodimenzionalni model potpun (P. E. Debevec 1996) i moguće je generisati bilo kakav nov 2D ili 3D prikaz.

Sistemi za modelovanje prostora na osnovu slika mogu biti:

- automatski ili
- poluautomatski.

Potpuno automatski sistemi su uglavnom veoma grubi i nepouzdanı, naročito kada se vrši snimanje složenog prostornog okruženja. Ukoliko postoji veći broj fotografija koje su pomerene za male intervale, automatsko prepoznavanje karakterističnih tačaka može da bude izvršeno. Iluminacija, zaklonjenost objekata, ograničen pristup i neravnomerne površi stvaraju velike probleme za automatsko uklanjanje i povezivanje slika (Remondino i El-Hakim 2006).

Poluautomatski sistemi (semi-automated) su mnogo češće u upotrebi jer daju bitno bolje rezultate od automatskih sistema. Ovi sistemi mogu da zahtevaju učešće korisnika u različitim segmentima. Postoje sistemi kod kojih se orijentacija vrši automatski, a u modelovanju učestvuje korisnik, ili korisnik učestvuje u orijentaciji, a model je kreiran automatski (Remondino i El-Hakim 2006). Moguće je uključivanje korisnika i u fazu orijentacije i u fazu modelovanja.

U domenu snimanja arhitektonskog, urbanog okruženja ulazni podaci mogu da budu slike kreirane:

- običnim (amaterskim) foto aparatima ili
- specijalno prilagođenim foto aparatima.

2.5.1.1 Restitucija

Sve veća količina istorijskih fotografija u arhivima povećava potrebu za razvojem modelovanja na osnovu jedne slike. Duga upotreba fotografije dovela je do toga da arhivske slike objekata često opstaju duže nego sami objekti. Potreba za razvojem sistema za restituciju istorijskih slika je najizraženija u područjima intenzivnih ekonomskih i političkih previranja, zbog čega je briga o kulturnom nasledu oslabljena. Paradoksalno, u takvim uslovima ne postoje finansijske mogućnosti za razvoj istraživanja u ovim domenima. Iz tog razloga ovom problemu je i dalje posvećeno znatno
manje pažnje u odnosu na usavršavanja savremenih veoma skupih hardverskih sistema visoke preciznosti za snimanje postojećih struktura (Waldhäusl 1992; Latellier 2007).

Posledica toga je da se u aktuelnoj literaturi može pronaći skup istraživanja koja se bave samo izolovanim problemima generisanja prostora na osnovu jedne slike koji odgovaraju specifičnim uslovima projekta. Studije slučaja u oblasti graditeljskog nasleđa zasnivaju se na jednostavnim relacijama i konstrukcijama. Najčešće se koristi određivanje centra perspektive na osnovu međusobno upravnih pravaca ili poznatih koordinata mernih tačaka (slike 61 i 62).

- Automatsko ekstrahovanje pravih linija (gore desno).
- Detekcija upravnih pravaca (gore levo).
- Model crkve (desno).
Pristupi modelovanju na osnovu jedne fotografije su veoma raznovrsni (Criminisi, Reid i Zisserman 2000; Wang i drugi 2005; Mok Oh i drugi 2001; Yang i drugi 2005; Hemmleb 1999; Cornou, Dhome i Sayd 2003a; Heuvel 1998a; Wilczkowiak 2004; Lourakis i Argyros 2007; Aguilera i Lahoz 2006), ali opšta sistematizacija nije uobličena.

Komercijalni softver takođe ima iste nedostatke (Gulati 2010; Murdock 2009). Aplikacije u domenu generisanja prostora na osnovu jedne slike su jednostavni za upotrebu, ali su ograničeni da rešavaju mali broj specijalnih slučajeva i ukoliko korisnik u potpunosti nije svestan neodređenosti jedne slike, često pružaju netačne rezultate (Gonzalez-Aguilera i Gomez-Lahoz 2008). Zbog toga je potpuno poznavanje mogućnosti i višesmislenosti perspektivnih projekcija neophodno za korišćenje softvera za restituцију и nezaobilazno при развоju sistema за generisanje простора на основу слика.

2.5.1.2 Fotogrametrija

Digitalne tehnologije omogućile su eksplozivan razvoj fotogrametrijskih metoda. Kristalisala se i jasna podela na dva tipa fotogrametrije, aerofotogrametriju (arial photogrammetry) i terestrijalnu fotogrametriju (terrestrial photogrammetry, close-range) (Linder 2006; V. Stojaković 2006). Ova kategorizacija je bazirana на основу типа korišćenih fotografija и prikazanih prostornih struktura. Aerofotogrametrija koristi slike snimljene из vazduha, a terestrijalna fotogrametrija koristi
Slike slikane sa zemlje. Osim što se razlikuju tipovi ulaznih fotografija, suštinske razlike postoje i u načinu prikupljanja ulaznih podataka, kao i u načinu modelovanja. Kod aerofotogrametrije koriste se specijalno prilagođene kamere, pravi se prethodni plan snimanja, slike su koplanarne, model se kreira u globalnom koordinatnom sistemu i alati za modelovanje su prilagođeni kreiranju konveksne nepravilne glatke površi (slike 63 i 64). Terestrijalna fotografimetrija koristi lokalne koordinatne sisteme, a međusobni položaj foto aparata u prostoru može biti proizvoljan. Orientacija foto aparata može se odrediti naknadno i alati za modelovanje prilagođeni su objektima koji se nalaze na zemlji (slike 65 i 66) (V. Stojaković 2008b).

Slika 63. Aero fotografimetrija, plan snimanja (V. Stojaković 2006).

Slika 64. Digitalni model terena kreiran korišćenjem aera fotografimetrije (segment Fruške Gore, projekat Centra za geoinformacione tehnologije i sisteme, FTN, Novi Sad).
Fotogrametrijski pristup je ekonomičan, efikasan i pogodan za kreiranje realnih 3D modela (P. E. Debevec 1996; Patais 2001). Izbor metoda za kreiranje prostornog modela određene strukture zavisi u velikoj meri od mogućnosti, specifičnosti i ciljeva projektnog zadatka (Grussenmeyer, Hanke i Streilein 2002).

31 Ako se neki element ne vidi na dve fotografije, njegov položaj se određuje korišćenjem veze sa poznatim elementima. Taj način modelovanja je u ovom radu objašnjen u odeljku o restituciji.
Slika 66. Model crkve Srca Isusovog u Apatinu, kreiran korišćenjem terestrijalne fotogrametrije (V. Stojaković).

Ovo istraživanje bavi se snimanjem objekata graditeljskog nasleđa. Zbog toga je dalja diskusija vezana za karakteristike terestrijalne fotogrametrije. Slike su slikane iz neposredne blizine objekta. Orijentisane fotografije prostorne strukture mogu da budu međusobno u različitim odnosima:

1) vertikalne i paralelne, dobijene translacijom foto aparata, najčešće paralelno sa ravni fasade (slika 67),
2) vertikalne sa istim centrom perspektive, dobijene rotiranjem optičke ose (slika 68),
3) vertikalne, dobijene rotacijom optičke ose oko tačke u blizini objekta (slika 69) ili
4) proizvoljno postavljene u prostoru (slika 70).

Radi povećanja preciznosti fotogrametrijskih modela potrebno je kreirati adekvatan set fotografija. Slike čije ose nisu paralelne daće bolje rezultate. Odnos razmaka između dva centra perspektive i prosečne udaljenosti od centara perspektive do objekta (base-to-depth ratio) treba da se kreće 0,5-0,75, a bolje rezultate će dati veća vrednost odnosa (Voltolini i drugi 2006). Preciznost modela drastično raste kada se broj slika povećava do četiri, a dalje povećanje broja slika neznatno utiče. Dobra distribucija i broj kontrolnih tačaka povećavaju preciznost (Remondino i El-Hakim 2006).

Za visoku preciznost u fotogrametrijskom modelovanju presudna je upotreba specijalnih sistema. Hardver (foto aparat i eventualna dodatna oprema) i softver variraju od pristupačnih do veoma skupih. Dostupni komercijalni paketi (PhotoModeler, ImageModeler, ShapeCapture, Elcovision32, Australis33, Dicigad 3D34, Tiphon35, Phidias36, iWitness37), uključuju alate za solidnu

32 PhotoModeler (http://www.photomodeler.com/), ImageModeler (nedavno otkupljen od strane Autodeska (http://usa.autodesk.com), ShapeCapture (http://www.shapecapture.com) i Elcovision
kalibraciju i orijentaciju foto aparata (Remondino i El-Hakim 2006; Shashi i Jain 2007a; Grussenmeyer, Hanke i Streilein 2002). Ovi softveri su poluautomatski i zahtevaju učešće korisnika pri procesiranju podataka. Kvalitet izlaznih podataka stoga zavisi i od ljudskog faktora, što otežava procenu prosečnog kvaliteta modela.

Prednost fotogrametrijskog modelovanja, bez obzira na stepen preciznosti, je to što su izlazni modeli uvek trodimenzionalni i stoga veoma fleksibilni za dalju upotrebu. Digitalni modeli vezuju vektorski model i rastersku teksturizaciju i mogu da sadrže veliku količinu detalja i meta podatke (Patais 2001; Yilmaz, Yakar i Yildiz 2008).

2.5.1.3 3D modelovanje

Generisanje prostora, odnosno 3D modelovanje treba da bude u skladu sa uslovima očekivanih rezultata kao i sa geometrijskim karakteristikama prostora koji je prikazan na slici. U procesu modelovanja na osnovu fotografija koriste se poligonalni modeli i jednostavna tela, jer je prostorna struktura opisana skupom tačaka, pravih i ravni u prostoru. Osnovna razlika u alatima za modelovanje je geometrija prostora koje treba generisati, odnosno da li je potrebno kreirati:

- površ terena ili
- građeni objekat.

U zavisnosti od toga, alati su prilagođeni kreiranju mreže troglova ili jednostavnih geometrijskih tela.

Fotogrametrijski softveri kao polazište za modelovanja često koriste oblake tačaka (point cloud). (Remondino i El-Hakim 2006; Sugaya, Kanatani i Kanayawa 2006). Oblaci tačaka se formiraju lociranjem većeg broja tačaka u prostoru na osnovu kojeg će biti umetani realni geometrijski oblici koji odgovaraju prikazanoj strukturi. Oblak tačaka može biti nestrukturiran ukoliko ne postoji pretpostavka o rasporedu tačaka u prostoru ili strukturiran ako grupe tačaka poseduju određenu prepoznatljivu tendenciju (Remondino i El-Hakim 2006). Oblak tačaka transformiše se u model umetanjem mreže troglova (mesh) ili jednostavnih tela (primitives).

Površ može da bude generisana:

- aproksimacijom ili
- interpolacijom.
U prvom slučaju površ se maksimalno približava tačkama, ali ne mora da ih sadrži, a u drugom slučaju sve tačke moraju biti adekvatno povezane (Remondino i El-Hakim 2006).

Oblak tačaka automatski uobičen u mesh površ je dovoljan za model terena i stoga se primarno koristi za aerofotogrametriju. I softver za terestrijalno fotogrametrijsko modelovanje takođe sadrži alate za kreiranje mreže trouglova koji se koriste pri modelovanju skulpturalnih motiva. Proces generisanja mreže trouglova od skupa tačaka naziva se triangulacija. Triangulacija može da bude različita:

- 2D triangulacija
- 2½D triangulacija
- 3D triangulacija

2D triangulacija kreira trouglove u ravni koji se dodiruju temenima i stranicama kao Voronoi dijagram. 2½D triangulacija nastaje od tačaka u ravni kojima je zadata visinska vrednost. Ovaj tip triangulacije idealan je za modelovanje terena. 3D triangulacijom se generiše površ (surfaces for 3D model) od tačaka potpuno proizvoljno postavljenih u prostoru. 3D triangulacija ili 'tetraedralizacija' je kreiranje mreže tetraedara koji se dodiruju ali se ne seku da bi stvorili optimalnu mrežu od skupa tačaka. (Remondino i El-Hakim 2006). Ovakav tip triangulacije pogodan je za skulpturalne i slobodne forme.

Softveri za terestrijalno fotogrametrijsko modelovanje najčešće koriste modelovanje umetanjem jednostavnih tela (primitives). Uglavnom je korisnik taj koji umeće jednostavna geometrijska tela. Ukoliko se mesh eksportuje automatski iz oblika tačaka, što nije pogodno za građeno okruženje, mesh je najčešće neophodno premodelovati radi stvaranja upotrebljivih modela građenih objekata.

U zavisnosti od stepena automatizacije softvera koji je korišćen, model može biti generisan:

- bez učešća korisnika, automatski
 - povezivanjem tačaka (slika 71)
 - na osnovu relacija (slika 72)
- sa delimičnim učešćem korisnika (slika 73)
- bez upotrebe automatizacije (slika 74)

Modeli kreirani na osnovu jedne fotografije najčešće ne koriste automatizaciju ili je koriste u manjem stepenu. Razlog je oskudnost informacija koje računar pouzdano prepoznaje na jednoj fotografiji.

Model iz dve fotografije može da bude generisan bez ikakvog učešća ili sa delimičnim učešćem korisnika. Da bi potpuno automatski sistem pružio zadovoljavajuće rezultate, proces detekcije 3D položaja tačaka treba da bude potpomognut automatski detektovanim geometrijskim relacijama. One moraju biti veoma lako uočljive, pa se najčešće koriste paralelizam, pravi uglovi

Slika 71. Automatsko modelovanje, na osnovu oblaka tačaka (Cornelius, i drugi 2004).

- Oblak tačaka (levo).
- Model (desno).
Slika 72. Automatsko modelovanje, na osnovu relacija (Werner i Zisserman 2002)
- Fotografija (levo).
- Automatska detekcija pravih (desno).

Slika 73. Delimično učešće korisnika (Lee i Nevatia 2003)
- Korisnik definiše parametre stubova (levo).
- Korisnik modeluje telo objekta (u sredini).
- Sistem automatski detektuje kolonade (desno).

Slika 74. Modelovanje bez upotrebe automatizacije (Shashi i Jain 2007).
- Označavanje karakterističnih površi (levo).
- Modelovanje (u sredini).
- Model (desno).

Foto realistični modeli podrazumevaju materijalizaciju, odnosno lepljenje slike na površi modela. Modeli generisani na osnovu fotografija imaju tu prednost da se delovi fotografije mogu lepiti direktno na model (slika 75), čime se povećava verodostojnost i detaljnost modela (Shashi i Jain 2007b). Mapiranje na osnovu realnih fotografija modelima daje notu stvarnog okruženja (P. E.Debevec 1996). Kod lepljenja tekstura na model bitno je koja će fotografija (ako ih ima više) biti
upotrebljena za materijalizaciju, koji algoritam je optimalan za projiciranje slike na površ i za generiranje novih scena i kako nadomestiti greške koje nastaju usled zaklonjenosti (Patais 2001).

Kreiranje novih dvodimenzionalnih scena na osnovu 3D modela (rendering) je proces čiji optimalni tok treba izabrati u zavisnosti od tipa modela (Cory i Meador 2001). Razlikuju se osnovne kategorije procesa rendera:

- render na osnovu slike i
- render na osnovu geometrije.

Render na osnovu slike se bazira na interpolaciji i reprojiciranju piksela sa ulaznih slika na ravan novog virtuelnog pogleda a render na osnovu geometrije 3D modela (geometry-based rendering) podrazumeva transformaciju modela, transformaciju izabranog pogleda i tretiranje nevidljivih i zaklonjenih površi. Brzina rendera na osnovu fotografija zavisi od kompleksnosti scene i za visok nivo foto realizma neophodan je kvalitetan softver, dok je kod rendera na osnovu slike brzina nezavisna od složenosti scene, a realizam rendera zavisi od kvaliteta ulazne fotografije (Kang 1998). Render na osnovu slike (image-based rendering) je bolji izbor ukoliko je 3D model generisan na osnovu fotografija.

Kvalitet modela generisanih na osnovu fotografija mogu da umanje (Remondino i El-Hakim 2006; Patais 2001): zaklonjenost objekata od interesa (object occlusions); poremećaj geometrije u prikazu (geometric scene distortion) koji nastaje usled neprecizne kalibracije i/ili orijentacije; radiometrijska deformacija slike (radiometric image distortion) koja nastaje usled korišćenja fotografija slikanih iz različitih uglova, različitim foto aparatima ili pod različitim osvetljenjem. Ispravka ovakvih neusklađenosti, može biti izvršena naknadnom intervencijom korisnika ukoliko je realističan prikaz neophodan. Nakon materijalizacije, model je dovršen, i može se pristupiti kreiranju željene prezentacije definisanjem osvetljenja scene i parametara virtualne kamere.
Najveća prednost digitalnih 3D zapisa u odnosu na klasične dvodimenzionalne prezentacije je njihova visoka fleksibilnost. Reprezentacije prostornog modela mogu da budu u formi bilo kog dvodimenzionalnog ili trodimenzionalnog prikaza, kao i dinamičkih prikaza. 3D modeli su podloga za kreiranje: ortogonalnih projekcija, perspektivnih i panoramskih projekcija (McMillan i Bishop 1995; Ablan 2007), stereoskopskih prikaza (anaglifi, polarizovani prikazi, VR), animacija (*walk-through* i *fly-through*) (Lo Turco, Sanna i Spallone 2009) i interaktivnih navigacionih 3D modela (Patais 2001) (slika 76).

Slika 76. Reprezentacija 3D modela.

- **Sferična panorama (levo), preuzeto sa** http://krpano.com, 01.2011.
- **Virtual reality (u sredini) (Kaufmann, i drugi 2008).**
- **Svetlosni 3D prikaz (desno) (Jones 2007, preuzeto od Blundell, 2008).**

Primena digitalnih modela je veoma široka, i sve više postaje neophodna u oblasti arhitekture, najviše u cilju digitalizacije arhiva graditeljskog nasleđa. Dokumentacija se prikuplja zbog: arhiviranja podataka koji mogu nestati ili biti oštećeni, izbegavanja oštećenja u toku interaktivnih ispitivanja konstrukcija (Remondino i El-Hakim 2006), kreiranja virtualnog turizma i muzeja u cilju promocije kulturnog nasleđa (Bastanlar i drugi 2008; Koutsoudis, Arnaoutoglou i Chamzas 2006), i edukacije koja formira svest i nacionalni identitet.
U ovom radu kreiran je i analiziran normativni poluautomatski sistem za generisanje prostora na osnovu perspektivnih slika. Svrha sistema je generisanje trodimenzionalnih objekata graditeljskog nasleda, ukoliko se podaci o objektu nalaze na perspektivnim slikama, odnosno fotografijama. Kako se tema odnosi samo za generisanje realnog prostora (modeling from reality ili MFR) (Ikeuchi i Sato 2001), sistem je primarno organizovan da odgovara prostornim podacima koji su bitni za izučavanje arhitektonskog graditeljskog nasleđa. Predloženi sistem je osmišljen je u formi procedura i postupaka koje se lako mogu implementirati, što nije cilj ovog rada.

Radi pravilnog strukturiranja sistema, prvo je potrebno razložiti koje su:

- očekivane karakteristike ulaznih podataka i
- željene karakteristike izlaznih podataka.

Ulažni podaci su perspektivne slike, odnosno fotografski snimci. Iako fotografije ne odgovaraju u potpunosti perspektivnoj projekciji, u daljim analizama biće usvojeno uopštenje da korišćene slike imaju sve osobine perspektivnog preslikavanja prostorne strukture na ravan, a kasnije će biti razmotrene razlike i njihove posledice.

Osnovna kategorizacija procesa obrađe zavisi od broja dostupnih fotografija. Mogu se razdvojiti dva osnovna segmenta sistema. Ukoliko je prostorna struktura prikazana samo na jednoj fotografiji postupak generisanja prostora biće suštinski drugačiji nego ako je ona prikazana na dve ili više fotografija. Postupak generisanja prostora bazira se na metodama:

1. restitucije – ako postoji samo jedna fotografija prostorne strukture,
2. fotogrametrije – ako postoje dve ili više fotografija prostorne strukture.

Izlazi podaci treba da budu u formi upotrebljivih i fleksibilnih digitalnih 3D modela. Karakteristike takvih modela su verodostojnost i realizam.

U ovom istraživanju primarno je da izlazni 3D model bude prilagođen za dalju upotrebu, što znači da treba da bude kreiran od jednostavnih geometrijskih tela. Nivo detaljnosc i realizma modela je povećan materijalima koji su ekstrahovani iz fotografija i automatski ‘zalepljeni’ na model.

Nivo preciznosti modela varira u zavisnosti od upotrebljenog tehnološkog postupka. Usavršavanja postupaka za postizanje visoke preciznosti su zasebna oblast i nisu tema ovog istraživanja, zbog čega će ovaj uslov biti delimično zanemaren. O stepenu odstupanja proporcija modela od realnih dimenzija, faktorima koji ih uzrokuju i mogućim poboljšanja biće diskutovano kasnije.

Kada su postavljene osobine ulaznih podataka koji mogu biti na raspolaganju i željena forma izlaznih podataka, preostaje da se odrede osobine procedure generisanja prostora na osnovu slika.

Primarna odlika sistema, odnosno procedure generisanja prostora na osnovu slika je efikasnost. Efikasnost se sastoji u tome da procedura bude upotrebljava, jednostavna i ekonomična.

Upotrebljivost procedure implicira da je neophodno da korisnik razume osnovne korake generisanja prostora na osnovu slika, naročito one u kojima se zahteva odlučivanje. Odabir
elemenata na fotografiji koji će se koristiti u proceduri zavisi od korisnika. Za detekciju bitnih i pouzdhanih elemenata, korisnik ima primarnu ulogu. Greška koju bi mogao da načini, značajno umanjuje pouzdanost modela. Numerički i analitički algoritmi koji se koriste u drugim savremenim istraživanjima vezanim za generiranje prostora na osnovu slika prosečnom korisniku uglavnom nisu razumljivi. Suprotno tome, metode koje će biti korišćene u ovom istraživanju, kao što su 3D konstrukcije i deskriptivna geometrija, su bliske intuitivnom doživljaju prostora.

Jednostavnost postupka treba da obehdbi pravilnu sistematizaciju. To podrazumeva određivanje neophodnih i isključivanje suvišnih komponenata sistema i njihovo pravilno povezivanje u velovitu strukturu. Osim toga, jednostavnost procedure takođe ide u prilog lakšem razumevanju postupka.

Ekonomičnost sistema podrazumeva da se izlazni podaci formiraju samo na osnovu slika, bez obavezne upotrebe dodatnih uređaja i terenskog rada.

Izvesno raslojavanje i povezivanje segmenata sistema je utvrđeno u skladu sa ciljevima i mogućnostima rešavanja određenih problema. Kreiranje celovitog sistema vršeno je postupno da bi kasnije svi segmenti bili objedinjeni. Procedura generiranja prostora sastoji se iz dva osnovna segmenta:

A. orijentacije i
B. modelovanja.

A) Da bi definisanje veze prikazanog prostora i njegove slike bilo moguće neophodno je prvo izvršiti orijentaciju slike, odnosno nači:

- položaj centra perspektivnog projiciranja, ako se generiranje prostora vrši na osnovu jedne fotografije,
- međusobni položaj fotografija u prostoru, ako se generiranje prostora vrši na osnovu više fotografija.

Tek nakon lociranja ovih elemenata moguće je diskutovati o vezi prostora i slike.

Problem detekcije centra perspektive vezan je za istorijske fotografije. Kod ovih slika, pretpostavlja se da korisnik raspolaže samo informacijama o objektima koji su prikazani na slici, a da ne zna nijedan parametar foto aparata kojim je fotografija snimljena. To znači da je neophodno odrediti žižnu daljinu i projekciju centra perspektive na ravan fotografije. Time je položaj centra perspektivnog preslikavanja određen u odnosu na fotografiju i dalje se može diskutovati o geometriji prikazanih objekata i međusoban položaj elemenata (Štulić 2006).

Kod fotogrametrijskog modelovanja pretpostavljamo da je položaj centara perspektive u odnosu na fotografije poznat. Ukoliko su fotografije slikane savremenim digitalnim foto aparatima, podaci o položaju centra perspektive u odnosu na ravan fotografije nalaze se u samom fajlu, a softver za modelovanje automatski prepoznaje i uvodi te parametre. Ukoliko pak nisu poznati centri perspektive korišćenih fotografija, oni mogu biti određeni na svakoj slici zasebno, postupkom koji se koristi kod restitucije.

Ukoliko se za modelovanje koristi više fotografija, neophodno je detektovati njihove međusobne položaje, odnosno odrediti parametre spoljašnje orijentacije foto aparata u lokalnom koordinatnom sistemu.

B) Interpretacija projekcije prostora, vrši se na osnovu prepoznavanja objekata na slici. Posmatrač može da izdvoji objekat od pozadine na osnovu kontura i da detektuje međusobne
prostorne odnose njegovih elemenata. Izbor osnovnih geometrijskih elementa je takav da se većina prostornih struktura koje se pojavljuju na fotografijama građene sredine, mogle njima opisati.

Geometrijski elementi treba realno da opišu formu objekta na najjednostavniji način. Elemente koji opisuju položajne karakteristike geometrijskih elemenata ćemo, radi jasnijeg prikaza, zvati atributima. Time je napravljena razlika između elemenata kao delova objekta i elemenata koji opisuju položaj tih delova.

Kada su razvrstani geometrijski elementi i atributi, manipulacija njihovih odnosa i relacija postaje moguća. Relacije služe da definišu odnos između dva geometrijska elemenata, tako da ta informacija doprinosi određivanju neke druge komponente sistema. Uvođenje i analiza relacija je ključna za detekciju položaja centra perspektive na jednoj slici, kao i za proces modelovanja sa orijentisanih fotografija.

Dakle problemi koje je potrebno posebno uzeti u obzir prilikom kreiranju sistema za generisanje prostora na osnovu slika se mogu izraziti sledećim pitanjima:

- Kako interpretirati prostorne objekte?
- Kako izabrati geometrijske elemente i njihove atribute?
- Koji izbor relacija je optimalan?
- Koji su elementi, atributi i relacije relevantni za orijentaciju jedne fotografije?
- Koji su elementi, atributi i relacije relevantni za orijentaciju više fotografija?
- Koji su elementi, atributi i relacije relevantni za određivanje položaja i geometrije objekta na osnovu jedne fotografije?
- Koji su elementi, atributi i relacije relevantni za određivanje položaja i geometrije objekta na osnovu više slika?

U narednim odeljcima su detaljno prikazani delovi sistema koji ga grade tako što postupno rešavaju prethodno navedena pitanja. Prednosti ovog sistema su:

- prilagođenost korisniku iz oblasti graditeljskog nasleđa,
 - vizuelizacija procesa u kojima je bitno razumevanje korisnika,
 - korišćenje elemenata perspektivne slike koji odgovaraju prirodnoj percepciji,
- veći postotak istorijskih fotografija građene sredine može da bude korišćen za restituciju,
- automatska kontrola neodređenosti jedne perspektivne projekcije i
- objedinjavanje modelovanja na osnovu jedne i više slika.
3.1 INTERPRETACIJA PROSTORNIH STRUKTURA

"Čovekovo interesovanje za prostor ima svoje egzistencijalne korene. Ono potiče iz potrebe da se shvate životni odnosi u njegovoj okolini, da se unese smisao i red u svet događaja i delanja" (Norberg-Šulc 1999).

Prostor u arhitekturi vezuje se za ljudsku percepciju. Nezavisno od toga da li se tretiraju elementi građenog ili neizgrađenog prostora, moraju da postoje granice, jasne ili simbolične, koje taj prostor oblikuju (Kurtović-Folić 2011). Ograničenost prostora je neophodan preduслов za njegovo poimanje i shvanje. Arhitektonski prostor, prema Jedikeu (Joedicke 2009) razlikuje se od 'njegovih manifestacija koje se nalaze u filozofiji', od 'pojma prostora na koji se misli u matematički' a narocito od 'apstraktnog smisla prostora u novoj fizici'. Arhitektonski prostor je posledica opažaja i može se interpretirati subelementima kao što su površina, zapremina i oblik. Oblik i arhitektonski prostor su nerazdvojni entiteti. Percepcija prostora je uslovljena oblikom, a prostorna distanca neophodna je za percepciju oblika (Joedicke 2009).

Interpretacija oblika korišćenjem elemenata pojavljuje se i u arhitektonskim i urbanističkim analizama prostora. U arhitektonskim analizama korišćenje elemenata kao što su sidovi, stubovi, grede, krovovi i drugi, je jedan od veoma čestih vidova upršćenja. Razvoj, praćenje i poređenje strukture urbanih područja takođe se najčešće vrši na osnovu ploana odabranih područja izgrađenog ili neizgrađenog prostora, uz postavljanje težišta na određeni urbani element, kao što su ulice, trgovi ili blokovi.

Geometrijska apstrakcija se često sreće u arhitektonskim i urbanističkim klasifikacijama. Pregledi razvoja arhitekture koriste upršćavanja položaja, planova, konstrukcije i oblika građevina radi adekvatne komparativne analize, kojom se izdvajaju opšte odlike arhitektonskih tipova dok se svaki objekat odlikuje i svojim posebnim karakteristikama. Geometrijska upršćenja su još uvek aktuelno sredstvo pri interpretaciji oblika i prostora arhitekturi i urbanizmu. K. Norberg-Šulc (Christian Norberg-Schulz) interpretira prostor korišćenjem elementarnih organizacionih shematama, gde centri reprezentuju bliskost, pravci kontinuitet, a površine zatvorenost. Za hijerarhijsku interpretaciju nivoa egzistencijalnog prostora koristi razmeru i odnos objekata u vezi sa čovekom. Sistem perceptualnih shematina čini egzistencijalni prostor, a njegovom konkretizacijom ostvaren je arhitektonski prostor (Norberg-Šulc 1999). Rob Krier (Rob Krier) za tipološku analizu gradskih prostora koristi geometrijske slike njihovih osnova. Krug, kvadrat i trougao su tri glavna bloka. Iznemama (kao što su prelom, segmentacija, sabiranje, prodor i izbliženje i promene dužina i/ili uglova) klasifikuje gradske prostore na osnovu horizontalnog rasporeda (Krier 1999). Iako složenost i
neujednačenost arhitektonskog prostora iziskuje kombinacije različitih teorijskih pristupa pri tumačenju prostora, geometrijska uprošćenja stvarnih oblika su praktična i stoga često korišćena.

Arhitektonski prostor nije ekvivalent geometrijskom prostoru, ali se između njih može uspostaviti odgovarajuća veza. U cilju interpretacije slike prostora, primenjena je analiza euklidskog prostora. Perspektivna slika prostora razlikuje se od materijalizovanog arhitektonskog prostora, ali odgovara perceptivnom prostoru. Indirektna veza između dve vrste trodimenzionalnih prostora, arhitektonskog (realnog) i geometrijskog (virtualnog), ostvenjena je preko dvodimenzionalnog medijuma i percepcije posmatrača. U cilju generisanja prostora na osnovu slike, neophodno je izvršiti transformaciju realnog, odnosno arhitektonskog prostora u dekartovski prostor.

Dekartovski prostor je sredstvo za uvođenje virtualnog arhitektonskog prostora. U ovom istraživanju je korišćeno prevodjenje arhitektonskih i urbanih elemenata u geometrijske elemente u cilju transformacij objekata iz realnog u virtualno okruženje. Ulazni podaci u sistem za generisanje prostora na osnovu perspektivnih slika su fotografije građenog okruženja. Izlazni podatak treba da bude digitalni 3D model prostorne strukture koja je na toj fotografiji prikazana. Zbog toga je neophodno predvideti osobine prostornih struktura koje su od interesa i izabrati adekvatan način interpretacije.

Optimalno je pretpostaviti da se najviše potrebnih relacija očitava na poliedarskim geometrijskim telima. Interpretacija strukture je stoga prilagođena takvim telima. Poliedarsko geometrijsko telo je označeno kao jedan objekat, a niz objekata čini prostornu strukturu.

Svaki takav objekat opisan je nizom geometrijskih elemenata kao što su tačka, prava i ravan zajedno sa njihovim međusobnim odnosima. Upravo su ovi elementi izabrani budući da ih što ih u građenom sredini ima dosta i lako se prepoznaju na slikama i relacije koje karakterišu njihove odnose se lako uvode i veoma su fleksibilne.

3.1.1 INTERPRETACIJA GEOMETRIJSKIH ELEMENATA

Delovi prostornih struktura su objekti, a objekte formiraju geometrijski elementi:

- tačka,
- prava i
- ravan.

Položaj svakog od ovi geometrijskih elemenata može da bude definisan na različite načine. Način na koji su tačka, prava i ravan uvedeni u proces generisanja prostora na osnovu slike se prilagođava karakteristikama sistema. Optimalni atributi kojima će elementi biti opisani su izabrani da obezbede najjednostavniji pristup interpretaciji prostora sa date slike.
Slojevito opisivanje prostornih struktura je osnova za analizu međusobnog uticaja komponenata sistema. Stoga, atributi određuju geometrijske elemente, a elementi određuju poliedarske objekte koji su delovi prostorne strukture i mogu se shematski predstaviti na sledeći način.

PROSTORNA STRUKTURA → OBJEKAT → ELEMENT → ATRIBUT

Ulazni podatak je fotografija, odnosno perspektivna slika, što je ključna činjenica za izbor atributa. Podrazumeva se da je perspektivna projekcija geometrijskog elementa na ravan slike poznata, jer čitava procedura generisanja prostora polazi od perspektivne slike.

1) Tačka

Prava koja sadrži centar perspektivног projiciranja P i tačku u prostoru naziva se vidni zrak. Vidni zrak obeležen je sa s a u donjem indeksu nalazi se oznaka tačke. Ukoliko ima više fotografija, u gornjem indeksu je broj fotografije.

Na mestu gde vidni zrak prodire ravan slike nalazi se perspektivna projekcija tačke на ravan slike.

a. Tačka на jednoj fotografiji

Ukoliko je poznata projekcija tačke A (A^C) na ravnог jedне slike, poznat je и vidni zrak s_A. Projekcije свих tačака koje se nalaze на tom vidnom zraku se poklapaju и stoga je nemoguće на osnovu jedne projekcije tačke definisati njen tačan položaj u prostoru (Streilein и Heuvel 1999).

Kako на jednoj fotografiji ne može da se uoči nijedna dodatna odrednica prostornог položaja tačke osim veze sa drugим elementима, zaključujemo да je nemoguće odrediti tačan položaj tačke u
prostoru na osnovu jedne fotografije. Njen projekcija je samo atribut za lociranje elemenata, ali izolovano ne može da se koristi za detekciju položaja tačke.

b. Tačka na više fotografija

Ukoliko su poznate projekcije tačke \(A \) na dve \((A^{C1} \text{ i } A^{C2}) \) ili više fotografija, poznati su i vidni zraci \(s_A^1 \text{ i } s_A^2 \). Kako oba zraka sadrže istu tačku, sledi da je njen tačan položaj određen presekom vidnih zrakova \((s_A^1 \cap s_A^2 = A) \).

Zaključujemo da je projekcija tačke jedini atribut koji može odrediti njen položaj, a ako su poznate projekcije iste tačke na više slike, moguće je tačno odrediti njen položaj u prostoru.

2) Prava

Ravan koja sadrži centar perspektivnog projiciranja \(P \) i pravu u prostoru naziva se vidna ravan. Vidna ravan obeležena je sa \(\sigma \) a u donjem indeksu nalazi se oznaka prave. Ukoliko ima više fotografija, u gornjem indeksu je broj fotografije.

Na mestu gde vidna ravan seče ravan slike nalazi se perspektivna projekcija prave na ravan slike.

a. Prava na jednoj fotografiji

Ukoliko je poznata projekcija prave \(a \) na ravni jedne slike \((a^C) \), poznata je i vidna pravac \(\sigma_a \). Projekcije svih pravih koje pripadaju toj vidnoj ravni se poklapaju i stoga je nemoguće na osnovu jedne projekcije prave definisati njen tačan položaj u prostoru. 38

Upotreba jednog skupa relacija je vezana za razmeravanje uglova, zbog čega je veoma pogodno koristiti uporedni zrak. On sadrži centar perspektivnog projiciranja \(P \) i paralelan je sa pravom u prostoru. Uporedni zrak je, dakle, predstavnik određenog pravca, odnosno skupa paralelnih pravih. Obeležava se sa \(s \), a donji indeks odgovara nazivu pravca.

Paralelne prave imaju zajedničku beskonačno daleku tačku. Karakteristika perspektivnih projekcija je da se beskonačno daleka tačka određenog pravca u opštem slučaju preslikava u konačnost. Ta tačka naziva se nedogled pravca i obeležava se sa \(N \). U donjem indeksu nalazi se naziv pravca.

Nedogled je atribut prave koji je veoma pogodan za korišćenje u ovom sistemu jer:

- lako se može detektovati na slici,
- projekcija nedogleda na slici tačno određuje njegov prostorni položaj,
- u skladu je sa generisanjem prostora u relativnoj razmeri i
- omogućava interpretaciju uglova pomoću uporednih zrakova.

Ako je poznat nedogled prave, njen pravac je tačno određen u prostoru. Međutim, tačan položaj prave nije poznat.

Dakle, ukoliko je poznata projekcija prave \(a \) \((a^C) \) i njen nedogled \(N_a \), određen je pravac prave \(a \) i vidna ravan kojoj ona pripada. Njen tačan položaj time nije određen, ali kako se modelovanje vrši u relativnoj razmeri, vezom sa drugim elementima može se odrediti tačna lokacija svake prave.

38 Položaj prave je određen i na osnovu dve tačke koje ona sadrži. Određivanje položaja prave na osnovu dve tačke uočene na fotografiji spada u domen upotrebe relacija, što će biti analizirano u narednim odeljcima.
b. **Prava na više fotografija**

Ukoliko su poznate projekcije prave a na dve (a_{C1}^o i a_{C2}^o) ili više fotografija, poznati su i vidne ravni a_{r1}^o i a_{r2}^o. Kako obe vidne ravni sadrže istu pravu, sledi da je njen tačan položaj u prostoru određen presekom vidnih ravni ($a_{r1}^o \cap a_{r2}^o = a$).

U postupku generisanja prostora na osnovu više slika nedogledne prave strogo se ne koristi dodatna informacija o položaju prave. Međutim, u toku rada sa realnim fotografijama, ovakvi elementi mogu da posluže za proveru preciznosti, odnosno da umanjuju mogućnost greške.

Dakle, prava će biti definisana svojom projekcijom i nedogledom. Ako postoji više fotografija, poznat je tačan položaj prave, a ako postoji jedna fotografija, potrebno je vezivanje za druge elemente, o čemu će se diskutovati u odeljku o modelovanju.

3. **Ravan**

a. **Ravan na jednoj fotografiji**

Ravan opštog položaja se projicira na ravan slike tako što svaka tačka ravnog kružnog odgovara jednom tački na ravnim slika (Štulić 2006). Zbog toga su projekcije svih ravnih opštih položaja iste, odnosno, nema smisla diskutovati o projekciji ravnog kao atributu.

Analogni analizi atributa prave, i ravan uvek pripada skupu paralelnih ravni, odnosno pramenu ravnog koje se seku u beskonačno dalekoj pravoj. Ta beskonačno daleka prava se perspektivnim projiciranjem preslikava u konačnost i naziva se nedoglednica ravnog. Nedoglednica se obeležava nazivom skupa ravnog, a u donjem indeksu je oznaka n.

Jedna ravan iz skupa paralelnih ravnih sadrži centar perspektive P, i naziva se uporedna ravan. Uporedna ravan obeležena je sa n, a u donjem indeksu je naziv skupa ravnog. Presek uporedne ravnog sa ravnim slika je nedoglednica snopa paralelnih ravni.

Nedoglednica je atribut ravnog koji je veoma pogodan za korišćenje u ovom sustavu iz razloga već navedenih kod analize nedogledne prave. Ako je poznata nedoglednica ravnog, određen je snop paralelnih ravni kojom ona pripada, a tačan položaj ravnog nije poznat. 39

b. **Ravan na više fotografija**

Nedoglednica pruža informaciju o snopu paralelnih ravni kojem ravan pripada, bez obzira na koliko fotografija je nedoglednica uočena. Obeležavanje iste nedoglednice na različitim fotografijama je korisno u toku rada sa realnim fotografijama, jer dodatni elementi služe za proveru preciznosti, odnosno umanjuju mogućnost greške.

Dakle, položaj ravnog je označen samo nedoglednicom i bez obzira na broj fotografija potrebno je povezivanje sa drugim elementima da bi bio određen tačan položaj ravnog, što će biti diskutovano u odeljku o modelovanju.

39 Položaj ravnog može se definisati i na osnovu tri tačke koje ona sadrži. Detekcija položaja ravnog na osnovu tri tačke uočene na fotografiji spada u domen upotrebe relacija, što će biti analizirano kasnije.
Završne napomene

Iz prethodne analize tačke, prave i ravni možemo zaključiti da su pogodni atributi projekcije koje su u konačnosti ili u beskonačnosti. U tabeli 1 su prikazani atributi koji uvode određen geometrijski element u sistem.

Atributima nije primaran cilj da tačno odrede položaj elementa u prostoru, već da obezbede pogodnu upotrebu relacija. Većina atributa delimično određuje položaj elementa, a tačna lokacija je neophodna tek u fazi modelovanja, kada će ta lokacija biti ustanovljena integracijom sa drugim elementima modela.

<table>
<thead>
<tr>
<th>Tip atributa</th>
<th>Projekcija dela elementa koji je u konačnosti</th>
<th>Projekcija dela elementa koji je u beskonačnosti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tačka</td>
<td>Projekcija tačke</td>
<td>-</td>
</tr>
<tr>
<td>Prava</td>
<td>Projekcija prave</td>
<td>Nedogled</td>
</tr>
<tr>
<td>Ravan</td>
<td>-</td>
<td>Nedoglednica</td>
</tr>
</tbody>
</table>

Tabela 1- Atributi elemenata.

3.1.2 INTERPRETACIJA RELACIJA

Relacije predstavljaju odnose između geometrijskih elemenata. One koji pomažu pri orijentaciji slike i/ili određuju položaj drugih elemenata. Kako je celokupan sistem podređen modelovanju objekata graditeljskog nasleđa, tako i relacije treba da odgovaraju najlakši i najčešće uočljivim odnosima među geometrijskim elementima na takvim slikama. Na slikama možemo uočiti:

- relacije incidencije,
- relacije položaja i
- relacije ponavljanja.

1. Relacije incidencije

Relacije incidencije označavaju da li jedan element pripada nekom drugom elementu, što je veoma bitno za fazu modelovanja i ostvarivanje veze među elementima i među različitim objektima koji grade prostornu strukturu.

Tačka može da pripada pravoj ili ravni. Potreban, ali ne i dovoljan uslov da tačka pripada pravoj je da projekcija tačke pripada projekciji prave. Ravan opšteg položaja može da sadrži bilo koju tačku na slici.

40 Razdvajanje i upotreba ovih atributa je veoma bitna za dalju primenu i razvoj sistema jer se kod niza fotografija sa malim pomerajem (na primer, video snimak) može uočiti karakterističan raspored beskonačno dalekih atributa. To je jedan od osnova za orijentaciju snimaka i predviđanje položaja atributa na fotografiji na osnovu njegovog položaja na ostalim slikama u nizu (Beardsley, Murray i Zisserman 1992).

41 Relacije incidencije nazivaju se i topološke relacije (topology constraints) (Heuvel 1998a).
Prava može da pripada ravni. U tom slučaju uporedni zrak prave pripada uporednoj ravni, odakle sledi da nedogled prave mora pripadati nedoglednici ravni (Štulić 2006).

2. **Relacije položaja**

Relacije položaja određuju odnos položaja elemenata pod uslovom da nije ispunjena relacija incidencije. Tačka može da pripada ili ne pripada pravoj ili ravni. Zato je tačka izostavljena iz položajnih relacija. Uzajamni položaj može se razmatrati između:
- dve prave,
- prave i ravni i
- dve ravni.

Ugao koji zaklapaju ovi elementi određuje njihov uzajamni položaj. Kategorije koje će biti izdvojene zbog svojih različitosti su:
- oštar ugao,
- ugao od 90° - upravnost i
- ugao od 180° - paralelizam, zajednička beskonačno daleka tački atribut.

Uglovi imaju suštinski značaj za orijentaciju jedne fotografije. Prave uglove i paralelna elemente korisnik može da prepozna na slici (Pizlo 2008). Ukoliko na slici ne postoji dovoljno takvih relacija ili su one nepouzdane, uključuju se i oštri uglovi. Oštri uglovi se ne prepoznaju na slici, te moraju biti dobijeni upotrebom pomoćnih metoda. To mogu biti direktno merenje ili snimanje, merenje sa mapa i karata, fotogrametrija i druge.

3. **Relacije ponavljanja**

Relacije ponavljanja se odnose na veličine koje se mogu ćuti na slici na više mesta. Ponavljanje može da se odnosi na:
- jednakost dužina i
- jednakost uglova.

Jednakost dužina ima različit uticaj na orijentaciju slike u zavisnosti od toga da li se iste duži nalaze:
- na istom pravcu (na jednoj pravoj ili na pravim koje se seku u beskonačnosti) ili
- na različitim pravcima (na pravim koje se seku u konačnosti ili se mimoilaze).

Jednakost uglova se takođe može razmatrati u dva slučaja, ako su:
- uglovi u istoj ili paralelnim ravnima ili
- uglovi u različitim ravnima.

U građenom okruženju zastupljene su relacije ponavljanja, naročito u istorijskom kontekstu. Raspored stubova, prozora i drugih detalja najčešće je formiran u pravilnom rasteru. Krovne ravni i

42 Relacije položaja spadaju delimično u kategoriju geometrijskih relacija (geometric constraints) i dimenziionalnih relacija (dimensional constraints). Pravi uglovi i paralelizam spadaju u geometrijske relacija, a oštri uglovi u dimenzionalne. Ova podela nije predstavljala prepreku u istraživanjima, jer većina radova analizira uticaj malog broja relacija (Heuvel 1998a; Cornou, Dhome i Sayd 2003a; Lourakis i Argyros 2007). U ovom radu je, zbog poštovanja logike sistemskog pristupa, podela relacija izvršena drugačije.

43 Relacije ponavljanja su slične dimenzionalnim relacijama (dimensional constraints) i simetriji, ali drugačije interpretirane.
Drugi kosi elementi često imaju isti nagib (koji je posmatraću najčešće nepoznat). Relacije ponavljanja koriste se i u procesu orijentacije slike i u procesu modelovanja.

Završne napomene
Relacije među elementima neophodne su za orijentaciju i za proces modelovanja sa jedne fotografije, a korisne za generisanje prostora na osnovu više fotografija. Shematski prikaz relacija upotreblijenih u sistemu za generisanje prostora na osnovu slike je dat na slici 77.

Slika 77. Shematski prikaz relacija.
3.2 GENERISANJE PROSTORA NA OSNOVU JEDNE PERSPEKTIVNE SLIKE – RESTITUCIJA

Postupak generisanja prostora na osnovu jedne fotografije, odnosno perspektivne slike, naziva se restitucija. Ukoliko građevina ne postoji, njena geometrijska struktura je dosledno zabeležena na fotografijama. Zbog toga se ova metoda najčešće koristi radi dobijanja pravih veličina prostornih struktura koje više ne postoje ili su pak modifikovane. Prema tome, pretpostavčemo da se restitucija najčešće izvodi iz jedne istorijske fotografije.

Od unutrašnjih parametara foto aparata u ovom radu biće razmatran položaj centra perspektive, odnosno žižna daljina i projekcija centra perspektive na ravan slike. Prema tome, prvi problem restitucije prostora je da se odredi pozicija centra perspektive. Ovaj postupak nazivamo fazom orijentacije.

Kada je lociran centar perspektive, može se razmatrati veza perspektivne slike prikazane strukture i prostornih svojstava, da bi se odredila njena geometrija. U ovoj fazi, koja predstavlja fazu modelovanja, najbitnije je da se elementi pravilno povežu.

Na osnovu jedne projekcije ne može biti detektovan položaj bilo kog elementa u prostoru, bez uvođenja određenih pretpostavki. Kombinovanje pretpostavki (relacija) i atributa elemenata označenih na slici, mora da zadovolji određen niz uslova da bi pozicija elementa bila jednoznačna. Odnosno, potrebno je da svi elementi budu pravilno međusobno povezani, u cilju modelovanja tačne geometrije prostorne struktura.

Kod istorijskih fotografija parametri foto aparata u opštem slučaju nisu poznati. Kalibracija aparata je tada veoma složen postupak. Da bi se dobili precizni prostorni podaci potrebno je detektovati unutrašnje parametre kamere, što obuhvata položaj centra perspektive i parametre distorzije. U ovom istraživanju fotografije su poistovećene sa perspektivnim slikama. Distorzija nije uzeta u obzir, ali je na kraju ovog poglavlja diskutovano o metodama iterativne kalibracije istorijske fotografije, koje su primenljive i u ovom sistemu.

3.2.1 ATRIBUTI GEOMETRIJSKIH ELEMENATA NA JEDNOJ PERSPEKTIVNOJ SLICI

Uvođenje atributa na slici je prvi stadijum generisanja prostora na osnovu jedne slike. U fazi orijentacije određivanje atributa se vrši bez poznavanja položaja centra perspektive i bez poznavanja tačnog položaja drugih elemenata u prostoru. Njihovu lokaciju direktno detektuje korisnik na osnovu slike. Atributi geometrijskih elemenata mogu biti:

- uočeni (prepoznati) na slici ili
- određeni korišćenjem relacija.

Atributi delimično određuju položaj tačke, prave i ravni i njihove određene karakteristike. Bitno je naglasiti da je u ovoj fazi razmatran samo međusobni odnos atributa, a ne elemenata, jer je centar perspektive nepoznat.
1. Tačka

Tačka ima jedan atribut, i to je njena projekcija na ravan slike. Dakle, ako je tačka A vidljiva na fotografiji, korisnik može da označi njenu projekciju A^C. Ako tačka A nije vidljiva na slici, njena projekcija A^C može da bude određena ako su poznate projekcije dve prave a i b kojima tačka pripada. U tom slučaju A^C se nalazi na preseku projecija pravih a^C i b^C ($(A \in a, A \in b) \implies (A^C = a^C \cap b^C)$).

Dakle, projekcija A^C tačke A je poznata ako se:

- prepozna na fotografiji ili ako su
- poznate projekcije bar dve prave koje sadrže tačku A (relacija incidencije).

2. Prava

Prava je opisana sa dva atributa, projekcijom i nedogledom. Položaj prave u prostoru određen je korišćenjem relacija i atributa.

a. Projekcija prave

Projekciju prave a na ravan slike (a^C) označava korisnik. Osim toga, projekcija prave na ravan slike može da bude određena i ako prava nije vidljiva usled zaklonjenosti. Ukoliko su poznate projekcije dveja tačaka koje prava sadrži, određena je projekcija prave $(a \ni \{A, B\} \implies a^C \ni \{A^C, B^C\})$.

Dakle, projekcija a^C prave a na ravan slike je određena ako je:

- prepozna na fotografiji ili ako su
- poznate projekcije bar dve tačke koje pripadaju pravoj a (relacije incidencije).

b. Nedogled prave

Nedogled prave a (N_a) je slika beskonačno daleke tačke koja može biti detektovana na različite načine. Nedogled prave može biti određen korišćenjem relacija incidencije, položaja ili jednakosti.

Relacije incidencije mogu se koristiti za određivanje nedogleda ukoliko je poznato da prava a pripada ravni α. Uporedni zrak s_α tada pripada uporednoj ravni v_α, odakle sledi da nedogled N_a mora pripadati nedoglednici α_n ($(\alpha \subset \alpha_n) \implies (N_a \ni \alpha_n)$). Prema tome, ako je poznata nedoglednica α_n ravni koja sadrži pravu a i ako je poznata projekcija prave a^C, položaj nedogleda je tačno određen u preseku prave i nedoglednice $(N_a = \alpha_n \cap a^C)$. Ako nije poznata projekcija a^C prave a, nedogled N_a je poznat ako postoje dve ravni α i β koje sadrže pravu. Tada se N_a nalazi na preseku nedoglednica te dve ravni $(N_a = \alpha_n \cap \beta_n)$.

Od relacija položaja, paralelnost direktno određuje položaj nedogleda. Nedogled je mesto prodora uporednog zraka s_α kroz ravan slike. Uporedni zrak sadrži centar perspektive P i paralelan je sa pravom α. Odatle proizlazi da sve paralelne prave imaju isti nedogled.

Najjednostavniji način detektovanja nedogleda je obeležavanje projekcija skupa paralelnih pravih $(a_1^C, a_2^C, a_3^C, \ldots)$. Sve one treba da imaju jedinstvenu presečnu tačku. Pri radu sa realnim fotografijama prave se skoro nikad neće preseći tačno u jednoj tački. U takvim slučajevima se nedogled određuje aproksimacijama (Heuvel 1998; Almansa, Desolneux i Vame 2002). Stoga je bolje da bude uočeno što više paralelnih pravih, iako je teorijski dovoljno samo dve $(N_a = a_1^C \cap a_2^C)$. Ako je poznata ravan (ili više ravni) paralelnih sa pravom, postupak određivanja nedogleda je isti kao i ako prava pripada ravni.
Relacije jednakosti mogu se koristiti za detekciju nedogleda ako su poznate jednake duži na istom pravcu. Dve jednake dužine uočene na istoj pravoj α definišu tačan odnos skraćenja projekcije prave na ravan slike (a^C) i time određuju nedogled prave N_a.

Neka su uočene projekcije tačaka A^C, B^C i C^C. Tačke A, B i C pripadaju pravoj α i u prostoru su tako raspoređene da je $AB = BC$. Radi objašnjenja konstrukcije nedogleda na osnovu dve jednake dužine, izaberi proizvoljnu ravan α koja sadrži pravu α i postavimo proizvoljnu frontalu (na primer, frontalu f_A kroz tačku A). Na projekciji frontale je očuvana jednakost duži (m). Pravce BB^C i CC^C su pravca simetrale između frontale i prave α, te se nedogled simetrale N_{sim} nalazi na preseku pravih BB^C i CC^C ($BB^C \cap CC^C = N_{sim}$). Kako i pravac simetrala pripada ravni α, nedoglednica ravnal α paralelna je sa frontalom i sadrži nedogled N_{sim}. Nedogled N_{a} prave α, nalazi se na preseku nedoglednice α_n i projekcije prave α ($N_{a} = a^C \cap \alpha_n$). Konstrukcija nedogleda je prikazana na slici 78.

Iz prethodne konstrukcije proizilazi da ukoliko je poznat nedogled te prave dužina prepoznata na slici se može translirati duž prave kojoj pripada, iako je centar perspektive nepoznat. Konstrukcija je prikazana na slici 79. Uočena je projekcija duži, $A^C B^C$, na pravoj α poznatog nedogleda N_a. Postavljena je nedoglednica α_n, proizvoljne ravnal α koja sadrži pravu α ($\alpha \subset \alpha \Rightarrow N_{a} \in \alpha_n$) i proizvoljna frontala (f_A). Prenošenje jednake dužine vrši se korišćenjem nedogleda simetrala N_{sim} (slično kao u prethodnom primeru). Na slici su prikazane projekcije tačaka A^C, B^C i C^C koje su u prostoru na međusobno jednakom rastojanju, kao i duž $D^C E^C$, gde je u prostoru $AB = DE$.

Slika 78. Konstrukcija nedogleda na osnovu slike dve jednake duži na istoj pravoj

Podrazumeva se da su duži prepoznate na jednoj pravoj, jer ako postoje dve prave istog pravca, onda je nedogled već određen na upotrebom relacija položaja.
Nedogled N_a prave α je, dakle, određen ako su poznati sledeći atributi:

- nedoglednice bar dve ravni koje sadrže pravu α (relacije incidencije) ili koje su paralelna sa pravom α (relacije položaja – paralelizam),
- projekcija α^C prave α i nedoglednica bar jedne ravni koja sadrži pravu α (relacije incidencije) ili koja je paralelna sa pravom α (relacije položaja – paralelizam),
- bar dve paralelne pravca α (relacije položaja – paralelizam) ili projekcija α^C prave α i dve jednake duži na njoj (relacije ponavljanja).

3. Ravan

Budući da se u opštem slučaju sve ravni prostora projiciraju na ravan slike, nedoglednica neke ravni je ključni podatak koji definiše tu ravan. Dakle, potrebno je diskutovati o načinu određivanja nedoglednica neke ravni α.

Ako su poznate dve neparalelne prave α i β koje pripadaju ravni α, uporedna ravan ν_α sadrži uporedne zrake s_α i s_β, a nedoglednica α_n sadrži nedoglede N_a i N_b ($((\alpha \supset \alpha), (\alpha \supset \beta)) \Rightarrow \alpha_n \ni \{N_a, N_b\}$). Analogno tome, ako su dva međusobno neparalelna pravca α i β paralelna sa ravni α, nedoglednica α_n sadrži nedoglede N_a i N_b ($((\alpha||\alpha), (\alpha||\beta)) \Rightarrow \alpha_n \ni \{N_a, N_b\}$).

Dakle, nedoglednica α_n ravni α određena je ako su poznati:

- nedogledi dve prave koje pripadaju ravni α (relacije incidencije) ili su paralelne sa ravni α (relacije položaja - paralelizam)

Završne napomene

Detekcijom položaja atributa ustanovljeni su neki prostorni odnosi elemenata sa slike. Na osnovu toga, daljom upotrebom relacija potrebno je pronaći položaj centra perspektive (faza orijentacije) i tačan položaj elemenata u prostoru (faza modelovanja).

3.2.2 ORIJENTACIJA - POLOŽAJ CENTRA PERSPEKTIVE

Orijentacija u slučaju generisanja prostora na osnovu jedne fotografije podrazumeva detekciju položaja centra perspektive. Smatraćemo da pre orijentacije nikakvi podaci o lokaciji centra perspektive nisu poznati. Jedini način da korisnik odredi gde se fotograf nalazio u trenutku snimanja je da uvede niz relacija koja će definisati fiksne odnose među elementima prepoznatim na slici.
Postojeće softverske aplikacije koriste automatsko određivanje pozicije centra perspektive. Veliki nedostatak ovih aplikacija je u tome što koriste mali dijapazon relacija koje mogu da budu upotrebljene za orijentaciju. Zbog toga, korisnik često mora da odustane od modelovanja ili da prethodno vrši komplikovane geometrijske konstrukcije, da bi došao do atributa koje određena aplikacija zahteva za orijentaciju. Ovakva mana drastično umanjuje broj fotografija koje se mogu restituuisati korišćenjem digitalnih alata i zasigurno je jedan od presudnih faktora za nedovoljnu praktičnu primenu softvera za restituciju.

Da bi orijentacija istorijskih fotografija bila moguća za veći procenat fotografija, potrebno je povećati broj relacija na osnovu kojih može biti izvršena orijentacija. U ovom radu uticaj svake relacije, navedene u odeljku 3.1.2, na položaj centra perspektive je razmotren.

Relacije incidencije ne utiču na orijentaciju fotografije. Neke relacije položaja i ponavljanja imaju uticaj na položaj centra perspektive a neke pak ne. U okviru relacija položaja, paralelizam ne utiče na lokaciju centra perspektive, dok uglovi (pravi i oštri) utiču. Jednakost dužina na različitim pravcima i jednakost uglova utiču na položaj centra perspektive.

Geometrijsko mesto centara perspektive je konstruisano u 3D koordinatnom sistemu na osnovu zadate relacije. Umeto projekcija pravih i ravni korišćeni su uporedni zraci i uporedne ravni. Razlog za korišćenje uporednih zrakova je taj što oni sadrže centar perspektive. Upotrebom uporednih zrakova i ravni dolazimo direktno do mogućeg položaja centra perspektive. Uporedni zraci i ravni su pogodni za konstrukcije u kojima se koriste poznati uglovi. Ako je ugaо između, na primer dve prave poznat, tada je ugaо između odgovarajućih uporednih zrakova takođе poznat, pošto je isti.

Uticaj svake relacije na geometrijsko mesto centara perspektive je konstruisan i razmotren u sledećim slučajevima:

45 Paralelni odnosi između bilo koja dva elementa određuju samo njihove beskonačno daleke atribute.

46 U okviru relacija ponavljanja jednakost dužina na istom pravcu, utiče samo na položaj nedogleda a ne i na položaj centra perspektive.

47 Relacije položaja su vezane za uglove u potpunosti, a relacije ponavljanja delimično.
1. Dve prave pod pravim uglom (relacije položaja).
2. Dve prave pod oštrim uglom (relacije položaja).
3. Prava i ravan pod pravim uglom (relacije položaja).
4. Prava i ravan pod oštrim uglom (relacije položaja).
5. Dve ravni pod pravim uglom (relacije položaja).
6. Dve ravni pod oštrim uglom (relacije položaja).
7. Jednake dužine na različitim pravcima (relacije ponavljanja).
8. Jednaki uglovi u paralelnim ravnima (relacije ponavljanja).
9. Jednaki uglovi u neparalelnim ravnima (relacije ponavljanja).

1. Dve prave pod pravim uglom

Neka su dve prave, odnosno dva pravca a i b na slici, čiji su nedogledi N_a i N_b određeni pod pravim uglom. Uporedni zraci ovih pravaca, s_a i s_b, su takođe pod pravim uglom. Uporedni zrak po definiciji sadrži nedogled pravca ($s_a \not\in N_a$, $s_b \not\in N_b$) i centar perspektive. Odnosno, centar perspektive P mora da leži na preseku uporednih zrakova s_a i s_b, ($P = s_a \cap s_b$).

Prema tome, problem određivanja geometrijskog mesta centra perspektive se svodi na detekciju geometrijskog mesta tačaka dve upravne prave (uporedni zraci s_a i s_b), ako je poznata po jedna tačka koju svaka prava sadrži (nedogledi N_a i N_b).

Periferni ugao nad prečnikom je 90°. Sledi da ako su prave pod pravim uglom njihov presek mora da pripada lopti koja ima centar na sredini duži koja povezuje dve tačke koje pripadaju tim pravim. Poznate tačke su nedogledi N_a i N_b, a prave koje treba da budu pod pravim uglom su s_a i s_b. Dakle, centar lopte C leži na sredini duži N_aN_b, a lopta je geometrijsko mesto centara perspektive P.

Na slici 80 prikazana je konstrukcija geometrijskog mesta centara perspektive. Da bi ugao između pravih s_a i s_b bio 90°, P mora pripadati kružnici konstruisanoj nad prečnikom N_aN_b. Skup svih kružnica koje zadovoljavaju navedeni uslov je lopta, koja predstavlja geometrijsko mesto centara perspektive (slika 81).

![Slika 80. Dve prave pod pravim uglom. Prikaz konstrukcije geometrijskog mesta centra perspektive.](image-url)
Specijalan slučaj se može pojaviti ukoliko je jedan pravac (na primer pravac \(a \)) paralelan sa ravni slike. Njegov nedogled je u beskonačnosti \((N_a \rightarrow \infty) \) jer uporedni zrak ne seče ravan slike (slika 82). U ovom slučaju geometrijsko mesto tačaka \(P \) je ravan koja sadrži konačni nedogled \(N_b \), upravnog pravca \(b \), i upravna je na pravac \(a \) (slika 83).

2. **Dve prave pod oštrim uglom**

Neka su dve prave, odnosno dva pravca \(a \) i \(b \) na slici, čiji su nedogledi \(N_a \) i \(N_b \) određeni, pod oštrim (ili tupim) uglom \(\varphi \). Uporedni zraci ovih pravaca, \(s_a \) i \(s_b \), seku se pod istim uglom. Analogno prethodnom slučaju, centar perspektive \(P \) mora da leži na preseku uporednih zrakova \(s_a \) i \(s_b \) \((P = s_a \cap s_b) \), i problem određivanja geometrijskog mesta centra perspektive se opet svodi na detekciju geometrijskog mesta tačaka dve prave pod uglom \(\varphi \) (uporedni zraci \(s_a \) i \(s_b \)), ako je poznata po jedna tačka koju svaki krak ugla sadrži (nedogledi \(N_a \) i \(N_b \)).
Kraci ugla koji formiraju uporedni zraci mogu biti u bilo kojoj ravni koja sadrži nedoglede N_a i N_b. Zato je prvo razmotrena konstrukcija geometrijskog mesta centra perspektive u proizvoljnoj ravni, a posle je ista konstrukcija primenjena na sve ravni, da bi se dobila rezultujuća površ.

Ugao između pravih s_a i s_b treba da bude φ. Dakle, periferni ugao je φ. U jednoj ravni geometrijsko mesto temena tog ugla nalazi se na kružnici centra C koja sadrži N_a i N_b, a centralni ugao $\angle N_aC N_b = 2\varphi$. Konstrukcija je prikazana na slici 84.

Površ generisana rotacijom kružnice oko ose N_a, N_b je samopresečni torus i on predstavlja geometrijsko mesto centara perspektive ukoliko je poznat ugao između dve prave, $\varphi \neq 90^\circ$ (slika 85).

Slika 84. Dve prave pod uglom φ. Prikaz konstrukcije geometrijskog mesta centra perspektive.

Geometrijsko mesto centara perspektive P

Slika 85. Dve prave pod uglom φ. Geometrijsko mesto centara perspektive.
Specijalan slučaj pojavljuje se ako je jedan pravac (na primer pravac \(a\)) paralelan sa ravni slike, pa je njegov nedogled u beskonačnosti \((N_a \to \infty)\) (slika 86). Centar perspektive \(P\) mora ležati na uporenom zraku drugog pravca \(b\), pa se konstrukcija geometrijskog mesta centra perspektive u ovom slučaju svodi se na određivanje mogućih uporednih zrakova \(s_b\) pravca \(b\). Uporedni zrak \(s_b\) mora da sadrži nedogled \(N_b\) i da bude pod uglom \(\varphi\) u odnosu na pravac \(a\). Geometrijsko mesto tačaka \(P\) je dakle rotacioni konus sa vrhom \(N_b\) i nagibom izvodnica \(\varphi\) prema pravcu \(a\) (slika 87).

\[\text{Slika 86. Specijalan slučaj dve prave pod uglom } \varphi, \text{ prava } a \text{ je paralelna sa ravni slike. Prikaz konstrukcije geometrijskog mesta centra perspektive.}\]

\[\text{Slika 87. Specijalan slučaj dve prave pod uglom } \varphi, \text{ prava } a \text{ je paralelna sa ravni slike. Geometrijsko mesto centara perspektive.}\]

3. Prava i ravan pod pravim uglom

Prava \(a\) i ravan \(\alpha\) se seku pod pravim uglom, odnosno prava \(a\) je normala ravni \(\alpha\). Poznat je nedogled prave, \(N_a\), i nedoglednica ravni, \(\alpha_n\). Uporedni zrak prave \(a\), \(s_a\), takođe je normala uporedne ravni \(v_a\). Uporedni zrak sadrži nedogled, a uporedna ravan nedoglednicu \((s_a \equiv N_a, v_a \equiv \alpha_n)\). Presek uporednog zraka i uporedne ravni je centar perspektive \(P\) \((P = s_a \cap v_a)\).

Problem određivanja geometrijskog mesta centra perspektive se svodi na konstrukciju normale (uporednog zraka \(s_a\)) iz tačke (nedogleda \(N_a\)) na ravan (uporednu ravan \(v_a\)) koja sadrži datum pravu (nedoglednicu \(\alpha_n\)). Centar perspektive \(P\) je prodor normale kroz ravan.

Postoji tačno jedna normala iz date tačke na ravan. Prema tome, za svaku ravan postoji i tačno jedan prodor normale. Izborom svih mogućih uporednih ravni \(v_a\), tačka prodora \(P\) rotira u ravni upravnoj na nedoglednicu \(\alpha_n\) oko središta normala iz \(N_a\) na \(\alpha_n\) i opisuje kružnicu. Ta kružnica je geometrijsko mesto tačaka \(P\) (slika 88).

Ovaj slučaj, prave upravne na ravan, može da se objasni i konstruiše i na drugi način.

Ako je prava normalna na ravan, ona je normalna na svaku pravu iz te ravni. Prema tome, ovaj problem može se razložiti na segmente koji su slični slučaju 1. Ukoliko uočimo dva proizvoljna pravca, \(b\) i \(c\), koji pripadaju ravni \(\alpha\) \((b \subset \alpha \Rightarrow N_b \in \alpha_n, c \subset \alpha \Rightarrow N_c \in \alpha_n)\), ti pravci moraju biti normalni na pravac \(a\).

Ako su pravac \(a\) i \(b\) međusobno upravni, geometrijsko mesto centara perspektive mora biti na sferi koja je se konstruiše kako je opisano u slučaju 1. Isto važi i za pravac \(c\). Odatle sledi da je geometrijsko mesto tačaka kružnica koji se nalazi na preseku te dve sfere (slika 89).
Nezavisno od proizvoljno izabranih pravaca b i c presek je uvek ista kružnica koja se nalazi u ravni normalnoj na nedoglednicu α_n. Kružnica sadrži tačku sa nedoglednice α_n i nedogled N_a (slika 88). Ista kružnica dobijena je, naravno, i u prvom opisanom postupku.

![Diagram](image)

Slika 88. Prava i ravan pod pravim uglom. Prikaz konstrukcije geometrijskog mesta centra perspektive.

Specijalni slučajevi pojavljuju se ukoliko su ravan ili prava paralelni sa ravni slike.

Prvi specijalan slučaj je kada je ravan α paralelna sa ravni slike. Uporedna ravan ν_α je ne seče pa je nedoglednica u beskonačnosti (α_n → ∞). U tom slučaju normala ravni α, pravac e, je zapravo normala ravni slike. Uporedni zrak s_a je normalan na ravan slike i sadrži centar perspektive. Odatle sledi da se nedogled N_a poklapa sa ortogonalnom projekcijom (P^C) centra perspektive P na ravan slike (N_a ≡ P^C). Prema tome, geometrijsko mesto tačaka P je prava koja je normalna na ravan slike i sadrži tačku N_a (slika 90).

Drugi specijalan slučaj je kada je pravac α paralelan sa ravni slike, pa je njegov nedogled u beskonačnosti (N_a → ∞). Ravan α koja je normalna na pravac α mora biti normalna i na ravan slike,
pa je i uporedna ravan v_α normalna na ravan slike. Geometrijsko mesto centara perspektive P je upravo ta uporedna ravan, odnosno ravan koja sadrži nedoglednicu α_n i normalna je na ravan slike (slika 91).

U ovim specijalnim slučajevima može se primetiti da se poznawanjem atributa elementa koji nije paralelan sa ravni slike direktno nalazi upravni element koje je paralelan sa ravni slike. Odnosno element u specijalnom položaju (paralelan sa ravni slike) nema nikakav uticaj na lokaciju centra perspektive.

4. **Prava i ravan pod oštrim uglom**

Prava a i ravan α zaklapaju ugao φ ($\varphi \neq 90^\circ$). Poznat je nedogled prave, N_a, i nedoglednica ravni, α_n. Uporedni zrak prave a, s_a, takođe sa uporednom ravnim v_α zaklapa ugao φ. Analogno prethodnom primeru, uporedni zrak sadrži nedogled, a uporedna ravan nedoglednica $(s_a \not\in N_a, v_\alpha \supset \alpha_n)$, a presek uporednog zraka i uporedne ravnih je centar perspektive $P = (s_a \cap v_\alpha)$.

Prema tome, problem određivanja geometrijskog mesta centra perspektive se svodi na konstrukciju prodora (P) prave (uporednog zraka s_a) iz tačke (nedogleda N_a) kroz ravan (uporednu ravan v_α) koja sadrži datu pravu (nedoglednicu α_n), tako da ugao između prave (s_a) i ravnih (v_α) bude poznati ugao φ.

Ovaj slučaj složeniji je od prethodnog jer postoji beskonačno mnogo pravih pod uglom φ ($\varphi \neq 90^\circ$), a normala na ravan iz date tačke je jedinstvena.

Prave kroz datu tačku sa zadatim nagibom prema ravnii, formiraju omotač rotacionog konusa, kojem je vrh data tačka, a osa normala ravni. Prema tome, za svaku ravan v_α postoji konus sa vrhom N_a i izvodnicama čiji je nagib prema ravnii v_α jednak uglu φ. Osa konusa je normala uporedne ravnii s_a. Svaka izvodnica konusa, dakle, može da bude uporedni zrak s_a. Presek izvodnica sa ravnii v_α je kružnica. Taj kružnica, baza konusa, je geometrijsko mesto centara perspektive za svaku uporednu ravan v_α (slika 92).

Za svaku uporednu ravan v_α postoji konus koji se konstruiše prema opisanom postupku. Centri bazina tih konusa nalaze se na kružnici, a svaki bazis je različitog prečnika u zavisnosti od dužine normala iz tačke N_a na ravan v_α. Ovi bazis (svih potencijalnih ravnii v_α) formiraju površ koja je geometrijsko mesto centara perspektive (slike 93 i 94).
Slika 92. Prava i ravan pod uglom \(\varphi \). Prikaz konstrukcije geometrijskog mesta centra perspektive.

Slika 93. Prava i ravan pod uglom \(\varphi \). Geometrijsko mesto centara perspektive. Perspektivni prikaz modela.

Slika 94. Prava i ravan pod uglom \(\varphi \). Geometrijsko mesto centara perspektive.
- Pogled u pravcu normale iz \(N_a \) na \(\alpha_n \) (levo).
- Pogled u pravcu \(\alpha_n \) (desno).

Specijalni slučajevi pojavljuju se ukoliko su ravan ili prava paralelni sa ravnim slikom.
U prvom specijalnom slučaju, kada je ravan \(\alpha \) paralelna sa ravni slike, nedoglednica je u beskonačnosti (\(\alpha_n \to \infty \)). Poznat je nedogled \(N_a \) prave \(\alpha \) koja je pod uglom \(\varphi \) u odnosu na ravan \(\alpha \). Prema tome, uporedni zrak \(s_\alpha \) mora biti pod uglom \(\varphi \) u odnosu na ravan slike. Kako uporedni zak sadrži nedogled \(N_a \) i centar perspektive \(P \), sledi da je geometrijsko mesto centara perspektive \(P \) rotacioni konus kojem je vrh nedogled \(N_a \), osa normala ravni slike, a izvodnice pod nagibom \(\varphi \) u odnosu na ravan slike (slika 95).

U drugom specijalnom slučaju, pravac \(\alpha \) je paralelan sa ravni slike, pa je njegov nedogled u beskonačnosti (\(N_a \to \infty \)). Dakle, poznan je pravac \(\alpha \) i nedoglednica \(\alpha_n \). Uporedna ravan \(v_\alpha \) treba da sadrži nedogled \(\alpha_n \) i da bude pod uglom \(\varphi \) (\(\varphi \neq 90^\circ \)) u odnosu na pravac \(\alpha \). Tačka \(P \) može se nalaziti bilo gde na takvoj uporednoj ravni jer će uporedni zrak \(s_\alpha \) u tom slučaju biti pod uglom \(\varphi \) u odnosu na uporednu ravan.

Da bi bilo određeno koje uporedne ravnice \(v_\alpha \) su pod uglom \(\varphi \) u odnosu na \(\alpha \), pogodno je uvesti normalu \(n_\alpha \) ravnice \(v_\alpha \). Ugao između normalice \(n_\alpha \) i pravca \(\alpha \) treba da bude \(90^\circ - \varphi \), što je takođe poznan ugao.

Da bi jasno prikazali željenu konstrukciju (slika 96) izabrana je proizvoljna tačka \(S \) na nedoglednici \(\alpha_n \). Sve normalice na ravan \(v_\alpha \) koje sadrže tačku \(S \) pripadaju ravnici \(\pi \) koja je upravna na nedoglednicu \(\alpha_n \). Dakle, postavljen problem svodi se na detekciju pravih u ravnici \(\pi \) (koje sadrže tačku \(S \)) koje zaklapaju ugao od \(90^\circ - \varphi \) sa pravom \(\alpha \). Te prave mogu se naći kao presek ravnici \(\pi \) i konusa čiji je vrh tačka \(S \), osa je pravac \(\alpha \) a nagib izvodnica je \(90^\circ - \varphi \). Presečne prave su ujedno normalice ravnici \(v_\alpha \) koje ispunjavaju uslov da budu pod uglom \(90^\circ - \varphi \) u odnosu na pravac \(\alpha \).

U zavisnosti od međusobnog položaja pravaca \(\alpha \) i nedoglednice \(v_\alpha \), ravan i konus mogu da se seku po dve, jednoj ili nijednoj pravoj. Ako ne postoji nijedna pravica, znači da zadarta pravica \(\alpha \) i ravan \(\alpha \) ne mogu da zaklapaju ugao \(\varphi \), odnosno, da postoji greška u atributima uočenih entiteta. Ako postoji jedna presečna pravica uporedna ravan će biti normalna na ravan slike. U opštem slučaju postoje dve presečne prave (\(n_\alpha^1 \) i \(n_\alpha^2 \)). Sledi da postoje i dve uporedne ravnice \(v_\alpha^1 \) i \(v_\alpha^2 \) (normalice na ove presečne prave) koje su pod uglom \(\varphi \) u odnosu na pravac \(\alpha \). Te ravnice su geometrijsko mesto centara perspektive \(P \). Na slici 96 je radi jasnijeg prikaza konstruisana samo jedna ravan \(v_\alpha^1 \), a druga se konstruiše analogno. Obe ravnice su prikazane na slici 97.

![Slika 95. Specijalan slučaj ravnica i ravni pod uglom \(\varphi \), ravan \(\alpha \) je paralelna sa ravni slike.](image)
5. **Dve ravni pod pravim uglom**

Dve ravni, α i β, poznatih nedoglednica, α_n i β_n, su međusobno upravne. Odatle sledi da su i odgovarajuće uporedne ravni ν_α i ν_β takođe pod pravim uglom. Uporedne ravni sadrže nedoglednice
(να ⊆ α₀, νβ ⊆ β₀) i centar perspektive. Prema tome, centar perspektive mora biti na preseku uporednih ravni (P ∈ (να ∩ νβ))

Problem se, dakle, svodi na detekciju geometrijskog mesta tačaka preseka dve upravne ravni (να i νβ) koje sadrže date prave (nedoglednice α₀ i β₀).

Nedoglednice se ne mogu mimoći jer po definiciji uvek pripadaju ravni slike. Prema tome, geometrijsko mesto centara perspektive je konus sa vrhom α₀ ∈ β₀ i izvodnicama να ∩ νβ. Način dobijanja i svojstva tog konusa su navedene u daljem tekstu.

Ukoliko izaberemo proizvoljnu ravan (π) normalnu na ravan slike i na jednu nedoglednicu, na primer α₀, možemo utvrditi gde je geometrijsko mesto centara perspektive P u toj ravni. Presek nedoglednice να i ravni π je normala iz tačke sa nedoglednice α₀ na ravan νβ. Ta normala upravna je na sve prave iz ravnih νβ, pa je upravna i na pravu preseka ravni νβ i π (slika 98).

Sledi da se konstrukcija u ravni π svodi na određivanje geometrijskog mesta tačaka dve upravne prave (preseci ravnih π i uporednih ravni) kroz dve date tačke (preseci ravnih π i nedoglednica). Korišćenjem osobina perifernih uglova zaključujemo da je geometrijsko mesto tačaka P u ravni π kružnica koja dodiruje α₀ ∈ β₀, i čiji je centar C u ravan slike (Slika 98).

Translacijom proizvoljno izabrane ravnine π geometrijsko mesto centara perspektive P opisuje kosi konus (slika 99) kojem je vrh u preseku nedoglednica (α₀ ∩ β₀), a osa sadrži sve centre kružnica C.

Slika 98. Dve ravni pod pravim uglom. Prikaz konstrukcije geometrijskog mesta centra perspektive.
Specijalan slučaj se javlja ukoliko je jedna od ravni (na primer α) paralelna sa ravni slike, zbog čega je njena nedoglednica u beskončnosti ($\alpha_n \to \infty$). Upravna ravan β mora biti upravna i na ravan slike. Prema tome, geometrijsko mesto centara perspektive je ravan koja je normalna na ravan slike i sadrži nedoglednicu β_n (slika 100). Ravan α ne utiče na položaj centra perspektive.

6. Dve ravni pod oštrim uglom

Dve ravni α i β, poznatih nedoglednica, α_n i β_n, zaklapaju ugao φ ($\varphi \neq 90^\circ$). Odgovarajuće uporedne ravni, ν_α i ν_β, zaklapaju isti ugao. Analogno prethodnom slučaju, uporedne ravni sadrže nedoglednice ($\nu_\alpha \supset \alpha_n, \nu_\beta \supset \beta_n$) a centar perspektive mora biti na preseku uporednih ravni ($P \in (\nu_\alpha \cap \nu_\beta)$).
Problem se, dakle, svodi na detekciju geometrijskog mesta tačaka preseka dveju ravni (v_α i v_β) koje sadrže date prave (nedoglednice α_n i β_n) i seku se pod zadatim uglom φ. Ako se ravni seku pod uglom φ, onda je nagib jedne ravni prema drugoj ravni takođe φ. Dakle, jedna ravan, na primer v_β, treba da ima nagib φ u odnosu na v_α. Prave iz jedne tačke (u ovom slučaju to je bilo koja tačka sa nedoglednice v_β) koje sa ravnii (v_α) zaklapaju ugao φ su izvodnice konusa kojem je osa normala ravnina v_α. Kako ravan v_β treba da zaklapa ugao φ prema ravnini v_α, njena nagibica mora da bude jedna od izvodnica konusa, odnosno ona mora da tangira opisani konus (slika 101).

Za svaku ravan v_α postoji tačkno jedna ravan v_β koja se dobija opisanom konstrukcijom. Centar perspektive nalazi se na preseku uporednih ravni. Sve presečne ravnine uporednih ravni sadrže presek nedoglednica ($\alpha_n \cap \beta_n$). Prema tome, geometrijsko mesto centara perspektive je konusna površ (slika 102) sa vrhom u preseku nedoglednica ($\alpha_n \cap \beta_n$), konstruisana na prethodno opisani način.

[Slika 101. Dve ravni pod uglom φ. Prikaz konstrukcije geometrijskog mesta centra perspektive.]

[Slika 102. Dve ravni pod uglom φ. Geometrijsko mesto centara perspektive.]
Specijalan slučaj kada je jedna ravan (na primer $\alpha, (\alpha_n \rightarrow \infty)$) paralelna sa ravni slike, problem svodi na konstrukciju ravnog β pod uglom φ u odnosu na ravan slike. Postoji tačno jedna ravan γ koja sadrži nedogled β_2 i zaklapa ugao φ sa ravnim slike i ta ravan je geometrijsko mesto centara perspektive P (slika 103). Ravan α ne utiče na položaj centra perspektive.

Slika 103. Specijalan slučaj dve ravnina pod uglom φ, ravan α je paralelna sa ravnim slike.

7. Jednake dužine na različitim pravcima

Prepoznavanje jednakih dužina na različitim pravcima doprinosi određivanju položaja centra perspektive. Prave na različitim pravcima mogu da se seku ili mimoilaze. Prikazana je konstrukcija za prave koje se seku, a ako se mimoilaze, translacijom ih je potrebno dovesti u položaj u kom se seku.

Poznata je dužina m na pravoj a i na pravoj b. Neka se prave a i b seku u tački M. Poznati su i atributi pravih, odnosno nedogledi N_a i N_b. Duž se može translirati po pravoj poznatog nedogleda bez poznavanja centra perspektive (ova konstrukcija prikazana je na strani 83, slika 79). Prema tome, radi jasnijeg prikaza konstrukcije duž m na oba pravca translirana je sa obe strane presečne tačke M i krajevi duži označeni su sa A, B, C i D tako da je $AM = MB = CM = MD$ (slika 104).

Dakle, poznate su projekcije jednakih duži $A^C M^C$ i $M^C B^C$ na pravcu a i na $C^C M^C$ i $M^C D^C$ na pravcu b. Preslikavanje jednakih duži sa jednog pravca na drugi može da bude izvršeno korišćenjem simetrala ugla (između pravih a i b). Prave AD i BC su paralelna sa pravcem jedne simetrale, a prave AC i BD sa pravcem druge simetrale. Simetrale (sim_1 i sim_2) leže u istoj ravni kao i prave a i b, odakle sledi da odgovarajuće nedogledi (N_{sim_1} i N_{sim_2}) moraju pripadati nedoglednic N_aN_b.

Nedogled jedne simetrale (N_{sim_1}), dakle, nalazi se na preseku pravih $A^C D^C$, $C^C B^C$ i nedoglednice N_aN_b, a nedogled druge simetrale (N_{sim_2}) na preseku pravih $A^C C^C$, $B^C D^C$ i nedoglednice N_aN_b.

Pošto su simetrale ugla međusobno pod pravim uglom, određivanje geometrijskog mesta centra perspektive svodi se na slučaj 1 (dve prave pod pravim uglom, prikazan na strani 85), odnosno geometrijsko mesto tačaka je lopta koja sadrži nedogledne simetrale pravaca a i b (sim_1 i sim_2) na kojima su prepoznate jednakke dužine, a centar joj je na središtu duži $N_{sim_1}N_{sim_2}$.
8. Jednaki uglovi u paralelnim ravnima

Poznato je da su dva ugla jednaka ($\angle ab = \angle cd$), ali nije poznata veličina ugla. Kraci oba ugla su u istoj ravni (α) ili u paralelnim ravnima, tako da nedogledi krakova moraju pripadati istoj nedoglednici $\alpha_n (\{N_a, N_b, N_c, N_d\} \in \alpha_n)$.

U slučaju 6 (strana 95) već je razmotreno da je, kad je poznat ugao između dve prave, geometrijsko mesto centara perspektive torus čija je osa spojina nedogleda tih pravih, a kružnica zavisi od veličine ugla. U ovom slučaju nije poznata veličina ugla, pa centar perspektive može biti na bilo kom torusu koji zadovoljava prethodno navedene uslove. Odnosno, za svaki ugao, centar perspektive nalazi se na preseku dva torusa sa osom α_n od kojih jedan sadrži duž $N_a N_b$ a drugi sadrži duž $N_c N_d$.

Presek torusa u bilo kojoj ravni koja sadrži α_n je isti, pa je ravnska konstrukcija prikazana na slici 105. Za svaki proizvoljno izabran ugao φ može se naći položaj tačke P (tačnije, mogu da postoje dva, jedno ili nijedno rešenje) (slika 105a). Geometrijsko mesto centara perspektive P za svako $\varphi, \varphi \in (0, 2\pi)$, je kružnica. Centar te kružnice (C_c) nalazi se na nedoglednici α_n. Kružnica se može se konstruisati korišćenjem tetive $P_1 P_2$ za svako proizvoljno φ (slika 105b).

Prostorni model je formiran rotacijom oko α_n. Prema tome, geometrijsko mesto centara perspektive ako su poznata dva jednaka ugla u paralelnim ravnima je lopta čiji je centar na nedoglednici α_n (slika 106).

a) Konstrukcija za proizvoljno φ (gore).

b) Konstrukcija kružnice (dole).

9. Jednaki uglovi u neparalelnim ravnima

Poznato je da su dva ugla jednaká (\(\angle ab = \angle cd\)). Nedogledni krakovi \((N_a, N_b, N_c, N_d)\) su poznati, ali nije poznata veličina ugla. Slično prethodnom slučaju, za svaki ugao \(\varphi\) centar perspektive mora se nalaziti na preseku dva torusa čije su ose \(N_aN_b\) i \(N_cN_d\), a prečnik kruga zavisi od izabranog \(\varphi\).

U ovom slučaju, za razliku od prethodnog, nedogledi nisu kolinearni i presek dva torusa biće prostorna kriva. Može se desiti i da se torusi ne seku, ili da se kriva bude višedelna. Na slici 107 prikazan je primer preseka torusa za proizvoljan ugao \(\varphi\).

Geometrijsko mesto centara perspektive je složena površ. Deo površi koja se dobija promenom vrednosti ugla \(\varphi\), \(\varphi \in (0,2\pi)\), prikazana je na slici 108.

\[\text{Slika 107. Jednaki uglovi u različitim ravnima. Princip konstruisanja geometrijskog mesta centara perspektive}\]

\[\text{Slika 108. Jednaki uglovi u različitim ravnima. Geometrijsko mesto centara perspektive}\]
Završne napomene

Na osnovu prikazanih konstrukcija moguće je odrediti centar persptive jedne fotografije o kojoj ne postoje nikakvi podaci. Sistematizovan uticaj relacija položaja na lociranje centra perspektive dat je u tabeli 2, a uticaj relacija ponavljanja u tabeli 3.

<table>
<thead>
<tr>
<th>Relacije položaja</th>
<th>Geometrijski elementi</th>
<th>Dve prave</th>
<th>Prava i ravan</th>
<th>Dve ravni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paralelizam</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Prav ugao</td>
<td>2D</td>
<td>1D</td>
<td>2D</td>
<td></td>
</tr>
<tr>
<td>Oštar/tup ugao</td>
<td>2D</td>
<td>2D</td>
<td>2D</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 2 – Sistematizacija uticaja relacija položaja na geometrijsko mesto centara perspektive. 2D i 1D označava da li je geometrijsko mesto tačaka dvodimenzionalna površ ili jednodimenzionalna linija

<table>
<thead>
<tr>
<th>Relacije ponavljanja</th>
<th>Geometrijsko mesto centara perspektive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednake dužine</td>
<td>Jednake dužine na istom pravcu</td>
</tr>
<tr>
<td></td>
<td>Jednake dužine na različitim pravcima</td>
</tr>
<tr>
<td>Jednaki uglovi</td>
<td>Jednaki uglovi u paralelnim ranima</td>
</tr>
<tr>
<td></td>
<td>Jednaki uglovi u različitim ravnima</td>
</tr>
</tbody>
</table>

Tabela 3 - Sistematizacija uticaja relacija ponavljanja na geometrijsko mesto centara perspektive. 2D označava da je geometrijsko mesto tačaka dvodimenzionalna površ

Centar perspektive je određen odnosima između elemenata koje posmatrač uočava na slici. U ovom odeljku je analiziran uticaj elemenata i odnosa koji su često zastupljeni u građenom okruženju. Koje od ovih relacija će biti upotrebljene za lociranje centra perspektive zavisi od specifičnosti prostora prikazanog na svakoj fotografiji.

Prikazani postupak je potpuno pouzdan za lociranje centra perspektive kada se vrši restitucija perspektivne slike. A kada se koriste realne fotografije potrebno je uzeti u obzir i njihovu distorziju.

Problem precizne kalibracije photo aparata čije su karakteristike potpuno nepoznate je veoma aktuelan. Jedan od pristupa idejno se uklapa u potencijalnu nadogradnju ovog sistema. Centar perspektive se odredi na osnovu pretpostavki o nedeformisanoj perspektivnoj projekciji koja je

48 U analitičkim modelima kamere parametara kamere izražen je matricom sa tri nepoznate (koje opisuju lokaciju centra perspektive). Kada se uzme u obzir i distorzija matrica ima pet nepoznatih (Hartley i Zisserman 2000).
opisana i u ovom istraživanju, i generiše se 3D model. Potom se dobijeni parametri kamere uvoze u CAD softver. Virtuelna kamera (virtual camera) se orijentise dobijenim parametrima. 3D model se postavi naspram fotografije i korisnik definiše karakteristične vektore odstupanja (discrepancy vector) između modela i fotografije. Parametri kalibracije se mere u toku tog podešavanja i iterativno se unose. Greška ovako kalibrisanih foto aparata smanjuje se na 2%, dok kod ovog tipa modelovanje inače ide i do 10%.

Kad je detektovan centar perspektive moguće je pristupiti procesu modelovanja, odnosno povezivanja perspektivne projekcije elemenata sa njihovom pozicijom u 3D prostoru.

3.2.3 3D MODELOVANJE

49 Pod pojmom 'slobodno modelovanje' podrazumевamo proces generisanja prostora u kojem pozicija geometrijskog elemenata u odnosu na druge elemente nije eksplicitno definisana.

50 Ideja korišćenja stepena slobode pri modelovanju postoji u softveru Pro/ENGINEER, ali ovaj softver ima za primarni cilj rešavanje mehaničkih problema, te su stepeni slobode podređeni sistemima tog tipa (Pennestrn, Cavae ce i Vita 2005). Osim toga, Pro/ENGINEER je namenjen mašinskim inženjerima i nije adekvatan za modelovanje graditeljskog nasleđа, niti za modelovanje na osnovu slike.

102
Problem modelovanja na osnovu jedne slike svodi se na problem tačnog lociranja geometrijskog elementa (poznatih ili nepoznatih atributa) u prostoru korišćenjem relacija u odnosu na druge elemente čiji je položaj poznat. To znači da je dovoljno izabrati jedan početni element poznatih atributa, a svi ostali elementi će biti određeni adekvatnim vezivanjem, pošto se modelovanje vrši u relativnoj razmeri.

Sledeći korak podrazumeva da je potrebno ustanoviti koje relacije i na koji način određuju lokaciju geometrijskih elemenata u prostoru. U procesu modelovanja položaj centra perspektive je određen, pa će u skladu sa tim ponovo biti analizirane sve relacije i njihov uticaj na položaj elemenata. Atributi elemenata koje određujemo mogu i ne moraju biti poznati u zavisnosti od specifičnosti prethodnog procesa.

Uticaj relacija i atributa na prostorni položaj geometrijskih elemenata je izražen korišćenjem stepena slobode (degrees of freedom, DoF) elementa u 3D koordinatnom sistemu. Stepeni slobode odnose se na translaciju i rotaciju elementa. Svaki element ima ukupan broj stepeni slobode (označen sa DoFG), a za svaku uvedenu relaciju ili atribut element ima određen broj ograničenja (označen sa DoFC). Ako je broj ograničenja veći ili jednak ukupnom broju stepeni slobode (ΣDoFC ≥ DoFG), položaj elementa je tačno određen u 3D koordinatnom sistemu.

Položaj tačke određuju tri prostorne koordinate. Tačka može da se transilira duž sve tri koordinate, ali ne može da se rotira, prema tome tačka ima tri stepena slobode (DoF = 3).

Prava u 3D koordinatnom sistemu ima četiri stepena slobode. Dva određuju rotaciju a dva translaciju. Translacija i rotacija su analizirane odvojeno (DoFTr = 2, DoFRt = 2, DoFG = 4).

Da bi položaj prave bio tačno određen u prostoru, ukupan broj ograničenja mora biti veći ili jednak od četiri. Broj ograničenja rotacije i translacije pojedinačno mora biti veći ili jednak od dva. Međutim, određenost položaja prave ne može se meriti prostim sabiranjem navedenih ograničenja. Posebna pažnja se mora obratiti na to da ograničenja stepena slobode moraju biti potpuno nezavisna. Ukoliko postoji zavisnost ili su elementi u specijalnom položaju, četiri i više ograničenja ne moraju biti dovoljna, jer se zapravo pojedinica ograničenja ponavljaju.

51. Stepeni slobode pretežno se koriste u mehaničkim sistemima i predstavljaju mogućnost promene položaja. Položaj tela menjaj se sa translacijom i/ili rotacijom. Kako se ovaj rad bavi geometrijskim (statičnim) sistemom, stepeni slobode odnose se samo na pozicioniranje elemenata u koordinatnom sistemu.

52. Broj ograničenja u svakom karakterističnom slučaju jednak je razlici ukupnog broja stepena slobode za određeni element i stepena slobode koje element ima u tom određenom slučaju (DoFC = DoFG − DoF).

53. Istraživanje je ograničeno na ispitivanje uticaja relacija i atributa na položaj elemenata u 3D koordinatnom sistemu. Nabranjene svih slučajeva koji određuju položaj elementa bi bilo i suviše obimno za koncept ovog istraživanja.

54. Telo u n-dimenzionalnom prostoru ima (n+1) stepeni slobode. Može da se transilira u n pravaca i da se rotira oko (n−1) osa. To znači da u trodimenzionalnom prostoru telo ima šest stepeni slobode jer može da se transilira u tri pravca i rotira oko tri ose.

Kako se translacijom prave u pravcu nje same dobija ista prava, kao i rotacijom oko same prave, prava u odnosu na telo ima dva stepena slobode manje (jednu mogućnost translacije i jednu mogućnost rotacije).

55. U gornjem indeksu ograničenja ili stepena slobode Tr je označka za translaciju a Rt rotaciju.

56. Na primer, ako su date dve različite tačke koje prava sadrži postoji ukupno četiri stepena slobode (DoFCrTr = 2, DoFCrRot = 2) koja su potpuno nezavisna i položaj prave je tačno određen. A ako je poznata jedna tačka prave a (DoFCrTr = 2) i ravan a paraelna sa pravom a (DoFCrRot = 1) i prava b upravna na nju (DoFCrRot = 1), ukupan broj ograničenja je opet četiri (DoFCrTr = 2, DoFCrRot = 2), a položaj prave a nije
Ravan ima tri stepena slobode u 3D prostoru \((\text{DoF}_a^G = 3) \), jedan stepen translacije \((\text{DoF}_a^{G,Tr} = 1) \) i dva stepena rotacije \((\text{DoF}_a^{G,Rt} = 2) \). \(^{57}\) I u ovom slučaju je potrebno voditi računa o međusobnoj zavisnosti ograničenja.

1. Relacije položaja

Relacije položaja koriste se za određivanje položaja prave ili ravni. Uticaj određenog ugla koji zaklapaju poznata prava ili ravan sa onom pravom ili ravni koju je potrebno locirati, izražen je u stepenima slobode. Pošto se relacije odnose samo na uglove, bitno je primetiti da je ograničenje stepena slobode translacije u svim kombinacijama jednako nuli \((\text{DoF}^{C,Tr} = 0) \). Iz toga sledi da je nemoguće locirati element korišćenjem samo relacija položaja. Uticaj relacija na stepene slobode elemenata prikazan je u tabeli 4.

<table>
<thead>
<tr>
<th>Relacije položaja</th>
<th>(\text{DoF}^{Tr})</th>
<th>(\text{DoF}^{Rt})</th>
<th>(\text{DoF}^{C,Tr})</th>
<th>(\text{DoF}^{C,Rt})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prava</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poznata paralelna prava</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Poznata paralelna ravan</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Poznata upravna prava</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Poznata upravna ravan</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Poznata prava pod oštrim ugлом</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Poznata ravan pod oštrim ugлом</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ravan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poznata paralelna prava</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Poznata paralelna ravan</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Poznata upravna prava</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Poznata upravna ravan</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Poznata prava pod oštrim ugлом</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Poznata ravan pod oštrim ugлом</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabela 4. Uticaj relacija položaja na stepen slobode i ograničenja geometrijskih elemenata. Tačka, \(\text{DoF}_a^G = 3; prava } (\text{DoF}_a^{G,Tr} = 2, \text{DoF}_a^{G,Rt} = 2, \text{DoF}_a^G = 4); ravan (\text{DoF}_a^{G,Tr} = 1, \text{DoF}_a^{G,Rt} = 2, \text{DoF}_a^G = 3).

2. Relacije incidencije

U okviru razmatranja uticaja ograničenja na položaj geometrijskih elemenata veoma je važno istaći važnost relacija incidencije. Relacije incidencije reflektuju suštini ideje 'vezivanja za model'. Na osnovu navedenih ograničenja prave i ravni, može se uočiti da za ograničenje translacije moraju biti korišćene relacije incidencije i/ili atributi.

Kod relacija incidencije bitan je i odnos i broj uvedenih elemenata. Na primer, ako tačka pripada pravcu, svaka tačka ima isti broj stepeni slobode ako se određuje položaj tačke, ali ako se određuje položaj prave, prva i druga uvedena tačka imaju različit uticaj na stepene slobode. Uticaj relacija na stepene slobode elemenata prikazan je u tabeli 5.

\(^{57}\) Analogno objašnjenju broja stepeni slobode prave, ravan koja se translira u dva pravca koja pripadaju ravni je ista ta ravan, kao i u slučaju kada se rotira oko ose upravne na ravan. Prema tome ravan ima tri stepena slobode manje nego telo (dve mogućnosti translacije i jednu mogućnost rotacije).
3. Relacije ponavljanja
Relacije ponavljanja koriste se samo za lociranje tačke, ali su veoma značajne i u procesu modelovanja, naročito pri modelovanju istorijskog okruženja. Upotreba rastera i simetričnih elemenata često je ključna za pozicioniranje segmenta arhitektonskog objekta.

Ako je poznat i razmak od poznate tačke na pravoj, položaj je tačno određen. Ako je poznat razmak od tačke, ali u nepoznatom pravcu, tačka mora pripadati lopti opisanoj oko poznate tačke. Da bi se prevazištala mogućnost postojanja dvaju rešenja, korisnik mora da definiše kojoj polovini lopte pripada tačka, odnosno da li je tačka bliža ili dalja od poznate tačke.

4. Atributi
Atributi delimično određuju položaj geometrijskih elemenata. Atributi se ne mogu se koristiti za pozicioniranje u potpunosti, već samo u kombinaciji sa relacijama.

Atribut tačke A je njena projekcija A^C na ravni slike. Tačka A koju posmatra obeleži na fotografiji može da se nalazi bilo gde na vidnom zraču s_A. Prema tome, tačka može samo da transliра duž vidnog zraka, odnosno ograničenje je isto kao kad tačka pripada pravoj.

Pravu a, kako je navedeno u prethodnim odeljcima, definisu dva atributa, perspektivna projekcija prave (a^C) na ravni slike i njen nedogled (N_a). Ovim je prava delimično određena, a tačan položaj je definisan vezivanjem za model. Pravu a koju posmatra obeleži na fotografiji (a^C) može se nalaziti bilo gde u vidnom ravnini R_A, pa je ovaj slučaj isti kao kad prava pripada ravni. Ako je poznat nedogled prave (N_a) zna se da pravac kojem pripada prava, odnosno slučaj je identičan kao kad je poznata paralelna prava.

Atribut ravni α koji delimično definiše njen položaj je nedoglednica ravni (α_n). Ako je poznata nedoglednica, ravan pripada određenom snopu paralelnih ravni.

Uticaj atributa na stepen slobođe elemenata prikazan je u tabeli 6.

<table>
<thead>
<tr>
<th>Relacije incidencije</th>
<th>DoF^{Tr}</th>
<th>DoF^{Rt}</th>
<th>$DoF^{C,Tr}$</th>
<th>$DoF^{C,Rt}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tačka</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Tačka pripada pravoj</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tačka pripada ravni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prava</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Prava sadrži jednu tačku</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prava sadrži dve tačke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prava pripada ravni</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ravan</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ravan sadrži jednu tačku</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravan sadrži dve tačke ili jednu pravu</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ravan sadrži tri tačke ili dve prave</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ravan sadrži pravu</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabela 5. Uticaj relacije incidencije na stepen slobode i ograničenja geometrijskih elemenata. Tačka, $DoF^T_3 = 3$; prava ($DoF^G_{a,Tr} = 2, DoF^G_{a,Rt} = 2, DoF^G_a = 4$); ravan ($DoF^G_{C,Tr} = 1, DoF^G_{C,Rt} = 2, DoF^G_a = 3$).
<table>
<thead>
<tr>
<th>Atributi</th>
<th>DoF^{Tr}</th>
<th>DoF^{Rt}</th>
<th>DoF^{C,Tr}</th>
<th>DoF^{C,Rt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tačka</td>
<td>Projekcija tačke</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Prava</td>
<td>Projekcija grave</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nedogled</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ravan</td>
<td>Nedoglednica</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabela 6. Uticaj atributa na stepen slobode i ograničenja geometrijskih elemenata. Tačka, DoF^{G} = 3; prava (DoF^{G,Tr} = 2, DoF^{G,Rt} = 2, DoF^{G} = 4); ravan (DoF^{G,Tr} = 1, DoF^{G,Rt} = 2, DoF^{G} = 3).

Završne napomene i primjeri

I u slučajevima u kojima se koriste relacije incidencije može da se pojaviti situacija u kojoj je nemoguće odrediti položaj određenog elementa. Na primer, na slici 110 prikazan je pokušaj određivanja debljine zida na osnovu jedne slike. Uprkos tome što je spoljašnji okvir prozora ABCD tačno određen, i presečnice zidova (AA_1, BB_1, CC_1, DD_1) sadrže temena tog okvira, njihov položaj je nepoznat. Na fotografiji se ne može uočiti nijedna relacija koja bi ograničila položaj presečnica zidova. Na slici su prikazane moguće trodimenzionalne strukture koje su u skladu sa fotografijom, ali nijedna pouzdano ne može da odredi debljinu zida, odnosno položaj unutrašnje ravni prozora \(A_1B_1C_1D_1\).

U ovakvim situacijama, prilikom restitucije istorijskih fotografija uvođenje relacija ponavljanja, odnosno jednakih veličina, je od presudnog značaja, što je ilustrovano u sledećem primjeru. Slučaj sličan prethodnom, može bez problema da bude rešen, ako korisnik može da uvede relaciju ponavljanja. U ovom primeru može se uočiti jednakost duži na levoj i desnoj strani otvora. Problem se lako rešava uvođenjem ravni simetrije. Na slici 111 položaj unutrašnje ravni prozora \(A_1B_1C_1\) određen je korišćenjem ravni simetrije \(\alpha\). Ravan \(\alpha\) sadrži poznatu vertikalnu kroz tačku \((DoF^{C,Tr} = 1, DoF^{C,Rot} = 1)\) \(A\) i upravna je na ravan fasade \(ABC\) (\(DoF^{C,Rot} = 1\)). Činjenica da tačke \(A\) i \(A_1\) pripadaju ravni \(\alpha\) je dovoljna za pozicioniranje unutrašnje ravni prozora (koja je paralelna sa ravni fasade).

U cilju izbegavanja mogućih grešaka u toku modelovanja koje nastaju zbog neodređenosti jedne projekcije, softver za modelovanje na osnovu jedne perspektivne slike bi mogao biti nadograđen usmeravanjem korisnika na korišćenje navedenih ograničenja.

Ukratko rečeno, suština procesa 3D modelovanja na osnovu jedne slike je da se pođe od jednog početnog elementa i uvođenjem poznatih odnosa i atributa, definiše relativni položaj drugih elemenata u odnosu na početni.
Slika 111. Korišćenje simetrije, odnosno jednakosti (Bočni prozor crkve Svetog srca Isusovog u Futogu; V. Stojaković).

3.3 GENERISANJE PROSTORA NA OSNOVU VIŠE PERSPEKTIVNIH SLIKA – FOTOGRAMETRIJA

Proces modelovanja može da ima različit stepen automatizacije. U slučaju potpune automatizacije softver prepoznaje iste tačke na svim fotografijama, izračunava njihov prostorni položaj i povezuje ih. Ovakvi modeli su veoma neprecizni i praktično neupotrebljivi bez dodatne intervencije korisnika. Ako korisnik modeluje, on prvo obeležava uočene geometrijske elemente na dve ili više fotografija. Njihov prostorni položaj proračunava se automatski. Na osnovu prostornih koordinata tih elemenata i intuitivnog shvatanja geometrije prostornih struktura, korisnik...

58 Detaljnije u odeljku 2.4.2
ponuđenim alatima generiše 3D model. Proces orijentacije i modelovanja biće prikazan u skladu sa dosadašnjom geometrijskom interpretacijom prostora i u skladu sa usvojenim karakteristikama sistema prikazanog u ovom radu.

Položaj svake tačke je tačno definisan u prostoru ako je ona je vidljiva na dve ili više slike čiji je međusobni položaj poznat. Poznavanje geometrije prikazanog objekta nije neophodno, ali je neophodno da fotografije prethodno budu pravilno orijentisane.

Orijentacija većeg broja fotografija istog prostora oslanja se na činjenicu da se na slikama nalazi ista prostorna struktura. Isti atribut ili relacija uočena na više fotografija određuje međusobni položaj snimaka
59. Na sličan način se detektuje i tačan položaj elemenata, odnosno 3D model. Kada su položaji fotografija i unutrašnji parametri foto aparata poznati, lociranje elemenata se određuje direktno na osnovu slika.

Deformacije slike mogu da budu ispravljene korišćenjem posebno prilagođenih aplikacija i/ili u okviru procesa kalibracije. Za fotografije snimljene savremenim foto aparatima postoje aplikacije koje ispravljaju deformacije slike u zavisnosti od modela aparata i žižne daljine
60.

3.3.1 ATRIBUTI GEOMETRIJSKIH ELEMETATA NA VIŠE PERSPEKTIVNIH SLIKA

Geometrijske elemente i njihove atribute u procesu generisanja prostora na osnovu više fotografija razmatramo samo pod pretpostavkom da je poznata međusobna orijentacija slika i parametri foto aparata, odnosno da su poznati položaji centara perspektive svih fotografija. U narednom odeljku će biti objašnjena orijentacija fotografija i razlozi za ovaj način analize.

Atributi elemenata su različiti za svaku fotografiju. Bitni atributi su projekcije elemenata jer one određuju tačan položaj elementa kad se koristi fotogrametrija. Beskonačno daleki atributi (nedogledni i nedoglednice) nisu toliko značajni. Uporedni zraci i uporedne ravni na svim fotografijama su međusobno paralelni i poznavanje ovih atributa ne može da odredi tačnu poziciju elementa. Drugačije rečeno, svejedno je da li su nedogled ili nedoglednica poznati na jednoj ili na obe fotografije. Iz tog razloga uticaj beskonačno dalekih atributa na položaj centra perspektive ili na položaj elementa u prostoru neće biti posebno razmatran
61. Uticaj beskonačno daleke tačke (nedogleda) i beskonačno daleke prave (nedoglednice) na međusobni položaj fotografije je isti kao i kad je u pitanju bilo koja druga tačka/prava u konačnosti, što će biti detaljnije objašnjeno u narednom odeljku 3.3.2.

Atributi koji su u beskonačnosti nemaju nikakvu posebnu ulogu u orijentaciji fotogrametrijskih modela. Projekcije elemenata na ravan slike i njihovi odnosi su ključni. Posledica toga je da tačka, koja je određena samo projekcijama, ima najveći značaj za generisanje prostora na osnovu više fotografija. Prava i ravan ne utiču na orijentaciju, i koriste se samo u modelovanju. Ravan, koja ne može da bude prepoznata na slici, ne može biti korišćena kao izolovan element, već samo indirektno korišćenjem relacije incidencije. Zbog toga je ravan izostavljena i u relacijama položaja koje u narednom odeljku obuhvataju samo međusobne odnose dve prave.

59 Po pojmom međusobni položaj fotografija podrazumeva se prostorna pozicija fotografija određena relativnim odnosom među položajima foto aparata u trenutku snimanja.
60 Ovi podaci nalaze se u digitalnom zapisu fotografije, i softver ih automatski očitava.
61 Uticaj je isti kao kad postoji jedna fotografija (odeljak 3.2.2)
3.3.2 ORIJENTACIJA - MEĐUSOBNI POLOŽAJ PERSPEKTIVNIH SLIKA

Orijentacija u fotografametriji može biti naknadna i prethodna. Kod prethodne orijentacije, pravi se plan snimanja i položaj fotografija je unapred poznat. Pri snimanju arhitektonskih objekata pretpostavljamo da položaj fotografija nije unapred predviđen. U tom slučaju koristi se naknadna orijentacija. Naknadna orijentacija je pogodna za primenu u arhitekturi, zbog čega je pretpostavljeno da su položaji foto aparata (camera pose) u trenutku snimanja nepoznati.

Detekcija položaja foto aparata na osnovu perspektivnih slika je složen proces, i on ne može biti prikazan korišćenjem konstruktivnih geometrijskih metoda, već zahteva analitički proračun. Orijentacija fotografija koje prikazuju isti prostor svodi se na upotrebu zavisnosti projekcija istih elementa na seriju fotografija. To znači da se orijentacija indirektno oslanja na položaj prikazanih elemenata u 3D koordinatnom sistemu, a da pri tome položaj fotografija nije poznat.

Naknadna kalibracija i orijentacija se baziraju na iterativnim metodama. Simultana kalibracija, orijentacija i pozicioniranje elemenata naziva se 'prilagođavanje pramena pravih' (bundle adjustment) (Hrabček i van den Heuvel 2000; Triggs, McLauchlan i Hartley 2000; Cornou, Dhome i Sayd 2003b). Ovi sistemi funkcionisu po principu minimizacije greške pri uzajamnom pozicioniranju elemenata i orijentaciji slika.

Kao ulazni elementi najviše se koriste tačke, ali i drugi geometrijski elementi i relacije njihovih odnosa (Karras 2005). Suština je da se iskorišćen zavisnost između različitih projekcija istog elementa. Ako su projekcije zavisne, izražavanjem te zavisnosti uspostavlja se veza prostornog položaja elemenata, njihovih projekcija, položaja slike i parametara foto aparata (Hartley i Zisserman 2000; Wattenberg 1995).

U ovom istraživanju su prikazane zavisnosti projekcija elemenata i relacija uvedenih u odeljku 3.1.

Geometrijski elementi tačka, prava i ravan, mogu biti uočeni na fotografijama. Veza tačke, njenih projekcija i parametara foto aparata analizirana je korišćenjem epipolarnie geometrije. Ona se bazira na vezi projekcija tačke na ravni više fotografija. Suština upotrebe epipolarnie geometrije je da se iskorišćen činjenica da je međusobni položaj dve fotografije zavisan, jer one prikazuju isti prostor. Položaj tačke koja je obeležena na jednoj fotografiji, mora biti na određenom mestu na drugoj fotografiji. Epipolarni elementi ne zavise od geometrije prostore strukture već samo od parametara foto aparata (Xu i Zhang 1996).

Neka su \mathbf{p}_1 i \mathbf{p}_2 redom centri perspektive dve fotografije istog objekta. Epipolarna ravan (epipolar plane) \mathbf{e} je svaka ravan koja sadrži centre perspektiva \mathbf{p}_1 i \mathbf{p}_2. Epipolarna ravan \mathbf{e}_A neke tačke A je ravan koja sadrži centre perspektive dve fotografije i tu tačku ($\mathbf{e} \ni \{A, \mathbf{p}_1, \mathbf{p}_2\}$). Prava koja spaja centre perspektive \mathbf{p}_1 i \mathbf{p}_2 naziva se bazična prava (baseline), a mesto gde ona prodire ravan fotografije su epipolovi E^1 i E^2. Epipolarni tragovi (epipolar lines), \mathbf{e}_1 i \mathbf{e}_2, su prave u kojima epipolarna ravan preseca ravan fotografija 1 i 2 (slika 112).

62 'Pramen pravih' se odnosi na skup pravih koje polaze iz centra perspektive svake slike, a 'prilagođavanje' se odnosi na podjednako uzimanje u obzir elemenata i parametara foto aparata.

63 Epipolarna geometrija je oblast geometrije koja se bavi odnosom stereo parova fotografija.
Projekcije A^C i A^C tačke A na ravan fotografija takođe moraju pripadati epipolarnoj ravni e_A, jer ona sadrži centre perspektive i tačku A, pa mora sadržati i vidne zrake s_A^1 i s_A^2. Pošto projekcija A^C pripada ravi e_A njena projekcija na ravan 2 (A^{C1}) koja je zapravo prodor vidnog zraka s_{AC}^2 ($s_{AC}^2 = P^2A$) kroz ravan fotografije 2, takođe mora pripadati epipolarnoj ravni e_A. Tačnije, ona pripada epipolarnom tragu na fotografiji 2 ($A^{C12} \in e_2$). Analogno tome, projekcija tačke A^C na ravan 1 (A^{C21}) pripada odgovarajućem epipolarnom tragu ($A^{C21} \in e_1$). Projekcija centra perspektive P^1 na ravan 2 pripada vidnom zraku $s_{P^1}^2$ ($s_{P^1}^2 = P^1P^2$), pa je taj vidni zrak poklopljen sa linijom baze. Kako ovaj vidni zrak sadrži oba centra perspektive, sledi da i on pripada epipolarnoj ravni. Odnosno, projekcija tačke P^1 na ravan 2 se poklapa sa epipolom E^2 ($P^{1C2} \equiv E^2$). Epipol E^2 pripada preseku ravni 2 i epipolarne ravni, odnosno drugom trag $E^2 \in e_2$, $P^{1C2} \in e_2)$. Analogno tome, projekcija centra perspektive (P^{2C1}) na ravan 1 se poklapa sa epipolom E^1 i pripada trag e_1 ($P^{2C1} \in e_1, P^{2C1} \in e_1$).

Iz uočenih pravilnosti zaključuje se da ako korisnik uoči projekciju tačke A na jednoj fotografiji, ona na drugoj fotografiji mora pripadati epipolarnom trag, koji se može konstruisati na osnovu jedne projekcije tačke i poznatih centara perspektiva.

Ako korisnik obeleži tačku A^C na fotografiji 1, epipolarni trag na fotografiji 2 mora da sadrži perspektivnu projekciju tačke A^C na ravan 2 ($A^{C12} \in e_2$). Epipolarni trag e_2 sadrži projekciju centra perspektive P^1 (epipol E^2) koji je poznat, i projekciju projekcije tačke A^C (koju je korisnik obeležio na ravin 1) na ravan 2 ($e_2 \equiv \{E^2, A^{C12}\}$). Korišćenjem te dve tačke konstruisan je epipolarni trag. Na epipolarnom tragu mora se nalaziti projekcija tačke A na fotografiji 2 (A^{C2}) (slika 113).

Prikaz detekcije položaja tačke u prostoru je dat na slici 114. Koordinatni sistem je postavljen tako da je ravan 3 koja je na slici za pravolinijski normalna na presečnicu ravni fotografija 1 i 2. Presečnica 1 i 2 se dakle u ravn 3 vidi kao tačka, a ravni fotografija se vide kao linije. Projekcije na njih su prikazane obaranjem u ravan 3. Projekcije centara perspektive P^1 i P^2 su poznate jer su fotografije orijentisane.
Kada korisnik obeleži projekciju tačke A na fotografiju 1 (A^{C1}) pravilima perspektivnog projiciranja može se naći projekcija tačke A^{C1} na fotografiju 2 (A^{C1C2}). Na isti način nalazi se i projekcija tačke P^1 (P^{1C2}) koja se poklapa sa epipolom E^2. Prema tome, epipolarni trag e_2, koji sadrži tačke A^{C1C2} i E^2, je konstruisan. Na tom tragu korisnik može da obeleži i projekciju tačke A na fotografiju 2 (A^{C2}).

Ova veza između projekcija tačaka je ključna za orijentaciju fotografija.64 Broj neophodnih tačaka zavisnosti od upotrebljenog metoda i poznatih parametara foto aparata65.

Proces orijentacije dve perspektivne slike se, dakle, vrši iterativno (Hartley i Zisserman 2000). Prvo se na osnovu veznih tačaka određuje pozicija foto aparat66 a uporedo se proračunava 3D položaj svih korišćenih veznih tačaka i prevera njihovih projekcija. Nakon završene orijentacije fotografija poznat je položaj obe slike i centara perspektive u lokalnom trodimenzionalnom koordinatnom sistemu.

Projekcije prave i ravi u opštem položaju nisu međusobno zavisne. Prema tome, od izolovanih elemenata, samo tačka može biti korišćena za orijentaciju.

Da bi odredili da li postoji uticaj relacija položaja na orijentaciju potrebno je proveriti da li postoji veza između projekcija elemenata koji su u određenom položaju. Pošto projekcija ravnine nije definisana, analiza ravnine je u ovom kontekstu isključena. Prema tome od relacija položaja analizirani su samo međusobni odnosi dve prave:

- Dve paralelne prave
- Dve prave pod pravim uglom
- Dve prave pod oštrim uglom.

64 Celokupan postupak orijentacije ne može se prikazati bez uvođenja analitičke geometrije, zbog čega je u ovom istraživanju objašnjenje izostavljeno. Položaj i parametri foto aparata računaju se različitim aproksimacijama na osnovu prepoznatih tačaka na obe fotografije (detaljno o orijentaciji fotografija i epipolarnoj geometriji u (Hartley i Zisserman 2000)).

66 Pozicija foto aparatova se računa tako što se fundamentalna matrica određuje na osnovu veznih tačaka, a proračun matrice kojom je izražen položaj foto aparata (camera matrix) vrši se pomoću fundamentalne matrice (Hartley i Zisserman 2000).

67 Ako je, na primer, poznata projekcija tačke A na jednoj fotografiji (A'_{C1}) i projekcija prave koja sadrži tu tačku na drugoj fotografiji (A'_{C2}), položaj projekcije tačke na drugu fotografiju (A'_{C2}) je tačno određen. Prema tome, veza projekcija tačke i prave postoji, ali ona proizlazi iz već pomenutih pravila epipolarnih geometrije, to jest, određenost projekcije A'_{C2} je zapravo posledica preseka epipolarnog tragova i prave ($e \cap A'_{C2} = A'_{C2}$).

68 Ako su poznati položaji centara perspektive, onda se relacije jednakosti svode na prethodne slučajeve. Ako je poznata tačka u poznam pravu i bar dve tačke, pa je dužina indirektno određena epipolarnim tragovima tih tačaka. Ako su poznate projekcije krakova ugla, tačno je određena i njegova prava veličina i položaj u prostoru, tako da uvođenje jednakosti nepoznatih uglova ne pruža nove informacije. Zbog toga relacije jednakosti nisu uključene u orijentaciju niza fotografija.
a. **Dve paralelne prave**

Ako su prave međusobno paralelne, poznati su nedogledi tog pravca na obe fotografije. Nedogled pravih je projekcija beskonačno daleke tačke. On ima isti uticaj na orijentaciju fotografija kao i bilo koja druga tačka u konačnosti.

Dakle, ako je poznat nedogled pravca a na fotografiji 1 (N_a^1), epipolarna ravan $\varepsilon_{N_a}^N$ sadrži taj nedogled i centre perspektive. Epipolarna ravan je određena sa te tri tačke ($\varepsilon_{N_a}^N \in \{N_1^1, P^1, P^2\}$), i može se odrediti presek sa fotografijom 2, odnosno epipolarni trag $\varepsilon_{N_a}^N$ ($\varepsilon_{N_a}^N = e_{N_a}^N \cap 2$). Nedogled pravca a na drugoj fotografiji (N_a^2) tada mora pripadati epipolarnom tragu $\varepsilon_{N_a}^N$ (slika 115).

![Slika 115. Veza projekcija nedogleda jedne prave na dve fotografije](image)

b. **Dve prave pod pravim uglom**

Neka su a i b prave pod pravim uglom. Ako je poznat položaj jednog kraka i temena tog ugla u prostoru, položaj drugog kraka je tačno određen samo na osnovu jedne fotografije (slika 116). Naime, poznata prava a u prostoru definiše vidne zrake s_a^1 i s_a^2. Prava b mora pripadati ravni β koja je normalna na pravu a. Uporedna ravan ν_β je normalna na odgovarajući vidni zrak s_a ($\nu_\beta^1 \perp s_a^1, \nu_\beta^2 \perp s_a^2$). Na mestu preseka uporedne ravni i fotografije nalazi se nedoglednica β_n ravni β ($\beta_n^1 = \nu_\beta^1 \cap 1, \beta_n^2 = \nu_\beta^2 \cap 2$). Ako korisnik označi projekciju prave b na jednu fotografiju, na primer b_{c1}, nedogled prave b na toj fotografiji, N_b^1, je poznat, jer se nalazi na preseku projekcije prave i nedoglednice ravni β ($N_b^1 = \beta_n^1 \cap b_{c1}$). Prema tome poznat je pravac prave b, a za tačan položaj prave b potrebno je da poznajemo teme ugla.
Vezu projekcija pravog ugla na dve fotografije možemo prikazati na sledeći način (slika 117). Neka je tačka O teme ugla, odnosno presek pravih a i b. Ako je poznata prava a i tačka O na obe fotografije ($a_{C1}, a_{C2}, O_{C1}, O_{C2}$), poznat je i njihov prostorni položaj ($a[a', a'', a''']$, $O[O', O'', O''']$) [u primeru na slici prava a je transformisana korišćenjem proizvoljne tačke A ($A \in a$)]. Ravan β je normalna na pravu a kroz tačku O i prava b pripada ravni β.

Slika 116. Veza projekcija ugla između dve upravne prave

![Slika 116. Veza projekcija ugla između dve upravne prave](image)

Vezu projekcija pravog ugla na dve fotografije možemo prikazati na sledeći način (slika 117). Neka je tačka O teme ugla, odnosno presek pravih a i b. Ako je poznata prava a i tačka O na obe fotografije ($a_{C1}, a_{C2}, O_{C1}, O_{C2}$), poznat je i njihov prostorni položaj ($a[a', a'', a''']$, $O[O', O'', O''']$) [u primeru na slici prava a je transformisana korišćenjem proizvoljne tačke A ($A \in a$)]. Ravan β je normalna na pravu a kroz tačku O i prava b pripada ravni β.

Slika 117. Detekcija pravog ugla na osnovu dve perspektivne slike.

![Slika 117. Detekcija pravog ugla na osnovu dve perspektivne slike.](image)
Neka je B prodorna tačka kraka b kroz ravan fotografije 1, odnosno $B \in \beta_1$. Ako korisnik oboleži projekciju prave b na fotografiji $1 \ (b^{C_1})$, poznato je mesto tačke $B [B^{C_1}, B'']$. Projekcija B^{C_2} mora se nalaziti na vidnom zraku $s''_B = P^{C_1}''B''$, na epipolarnom tragu e''_B i na projekciji traga β_1 na fotografiju $2 \ (\beta_1^{C_2})$. Presecanjem ovih pravih nalazimo B^{C_2}, odnosno projekciju drugog kraka $b^{C_2} \ (b^{C_2} = O^{C_2}B^{C_2})$.

Pošto je jedna projekcija jednog kraka ugla poznata na osnovu ostalih elemenata i relacija, sledi da pravi uglovi između pravih mogu biti korišćeni za orijentaciju fotografija.

c. Dve prave pod oštrim uglom

Neka je prava b pod pozнатим oštrim uglom $\varphi (\varphi \neq 90^\circ)$ u odnosu na pozнату pravu a. Postoji beskonačno mnogo pravih pod uglom φ kroz datu tačku O. Geometrijsko mesto pravih b je rotacioni konus čiji je vrh teme ugla O, a osa prava a (slika 118).

Ako je poznata i jedna projekcija prave b (na primer b^{C_1}) onda prava b pripada vidnoj ravni σ_b^1. Ravan σ_b^1 sadrži teme ugla O, pa stoga ona seče konus po izvodnicama. Presek konusa i ravni može da bude nijedna, jedna ili dve izvodnice. Dakle, za položaj prave b postoji nijedna, jedna ili dve mogućnosti. O uzrocima i posledicama različitog broja rešenja je već diskutovano u odeljku 3.2.2 u slučaju Prava i ravan pod oštrim uglom (strana 90).

Dalja konstrukcija projekcija kraka ugla b je analogna prethodnom slučaju (Dve prave pod pravim uglom).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{slika118.png}
\caption{Veza projekcija ugla φ između dve prave.}
\end{figure}

Završne napomene

Ključna ideja orijentacije fotografija je činjenica da je na njima prikazan isti prostor. On predstavlja indirektnu vezu dvaju perspektivnih projekcija. Ukoliko između projekcija elementa postoji zavisnost, podatak može biti iskorišćen za orijentaciju fotografija. Postojeći fotogrametrijski
softveri za orijentaciju primarno se baziraju na projekciji tačke, ali postoji i mogućnost naknadnog uvođenja relacija položaja.

Kada su fotografije međusobno orijentisane modelovanje se odvija u proizvoljnom lokalnom trodimenzionalnom koordinatnom sistemu.

3.3.3 3D MODELOVANJE

Fotogrametrijsko modelovanje razlikuje se od modelovanja na osnovu jedne fotografije. Kod fotogrametrijskih modela, element prepoznat na dve fotografije je tačno lociran u prostoru, bez upotrebe dodatnih atributa ili vezivanja za model.

Prostorni položaj tačke obeležene na dve fotografije je poznat. Projekcije tačaka su međusobno zavisne, odnosno tačka obeležena na jednoj fotografiji mora pripadati epipolarnom tragu na drugoj fotografiji.

Slika 119. Epipolarni tragovi.
Prave obeležene na dve fotografije nisu ni u kakvoj međusobnoj zavisnosti (slika 120). Uočavanjem perspektivne projekcije prave a^C_1 na fotografiji 1 sledi da se prava nalazi u vidnoj ravnini σ^1. Isto važi i za fotografiju 2. Dakle, prava a nalazi se na preseku vidnih ravnini σ^1 i σ^2 ($a = \sigma^1 \cap \sigma^2$). Ako su vidne ravnine paralelne, prava a bi bila u beskonačnosti, a pošto se govori o realnim modelima, to bi značilo da postoji greška u obeležavanju projekcija prave. U slučaju da vidna ravan sadrži oba centra perspektive položaj prave nije određen jer se vidne ravnine se poklapaju.

![Slika 120. Projekcija prave na dve perspektivne slike.](image)

Pozicioniranje ravni u prostoru, vrši se indirektno, pošto projekcija ravni nije definisana. Tada korisnik određuje referentne ravni u modelu relacijama incidencije ili položaja. Svi elementi su, dakle, određeni projekcijama na više ravni. Proces modelovanja na osnovu orijentisanih i kalibriranih slika, treba prilagoditi geometriji prostorne strukture koja se modeluje i traženim karakteristikama modela (detaljnije o tipovim modelovanja u odeljku 2.4.3). U oblasti arhitekture, modelovanje korišćenjem jednostavnih tela je najčešće korišćeno za prikaz prostornih struktura.

Generisanje prostora na osnovu više orijentisanih slika može se vršiti i manuelno, međutim zbog složenosti procedure, takav tip generisanja prostora nema praktičan značaj. Na slici 121 prikazan je primer manuelnog modelovanja kocke na osnovu dve fotografije. Ravni fotografija (2 i 3) postavljene su upravno na ravan crteža (1). U konstrukciji je korišćena projekcija slike sa ravni 2 na ravan 3, na osnovu koje su pronađeni epipolarni tragovi za svako teme kocke. Nakon toga, kocka je konstruisana u tri ortogonalne projekcije. Kocka translirana u pravcu normalnom na ravan 1 prikazana je u drugoj i trećoj ortogonalnoj projekciji radi bolje preglednosti crteža.
Slika 121. Generisanje kocke iz dve orijentisane fotografije, proces manuelne fotogrametrije (V. Stojaković).
Modelovanje korišćenjem prilagođenog softvera za terestrijalnu fotogrametriju odgovara uslovima praktične primene u oblasti arhitekture. Modelovanje na osnovu oblaka tačaka (point cloud detection) i modelovanje na osnovu pravih linija (line-photogrammetry) (Petsa i Karras 2000; Zhou i Li 2001; Burtch 2008; Heuvel 1999) pogodno je za generisanje modela arhitektonskih objekata.\(^69\)

Projekcija tačke je veoma jednostavna za upotrebu u fotogrametrijskim modelima. Alati u softveru prilagođenom za fotogrametrijsko modelovanje često se baziraju na kreiranju oblaka tačaka kao baze za modelovanje.

Oblak tačaka može definisati korisnik ili se kreira automatski. Prednost prvog je postojanje manjeg broja tačaka i mogućnost boljeg izbora tačaka u oblaku, a prednost drugog je viši stepen automatizacije. Takođe, i model koji nastaje od oblaka tačaka, može da generiše korisnik ili da se generiše automatski. Model koji kreira korisnik zahteva njegovo aktivno učešće, ali je izlazni model 'čist' i odmah prilagođen za dalju upotrebu (slika 122). Automatski kreirane modele, naročito u domenu arhitekture, najčešće je neophodno 'premodelovati' da bi se mogli dalje koristiti (slika 123).

Izbor metode modelovanja treba napraviti na osnovu poznavanja osobina geometrije objekta koji je na slikama prikazan. Kod većine realnih problema najbolje rezultate pruža simultano korišćenje raznih metoda i prilagođavanje specifičnostima projekta (El-Hakim, Beraldin i Pica 2002).

\(^69\) I oblak tačaka i skup pravih može biti ili generisan automatski ili na osnovu projekcija koje obeležava korisnik.

\(^70\) B-rep ili Boundary representation je tip interpretacije 3D tela tako što je omotač tela definisan skupom ograničenih površina
Slika 122. Model koji kreira korisnik umetanjem jednostavnih tela, crkva Srca Isusovog u Apatinu (V. Stojaković).

- Fotografije (leva).
- Model portala (desno).

Slika 123. Automatski model portala u York Minster-u (Mastion 2008).

- Fotografije (leva).
- Model portala (desno).
3.4 PRIKAZ STRUKTURE SISTEMA

U prethodnom odeljku definisani su segmenti sistema i njihovi uticaji kao zasebne celine. Sistemska pristup treba da obuhvati suštini istraživanja i da obezbedi celovitost i konzistentnost pristupa. U ovom odeljku objedinjeni su svi delovi sistema u jednu celovitu strukturu.

Procedura generisanja prostora na osnovu perspektivnih slika je kompleksan sistem kojeg sačinjavaju delovi sistema:
- komponente i
- grupe komponenata (segmenti).

Komponente sistema su raspoređene u hijerarhijskoj strukturi, tako da formiraju logične celine, odnosno segmente. Sistem je podeljen na dva različita nezavisna segmenta:
- segment 1 - generisanje prostora na osnovu jedne fotografije i
- segment 2 - generisanje prostora na osnovu više fotografija.

Ova dva segmenta suštinski se razlikuju jer su im ulazni podaci drugačiji. Delovi oba segmenta se takođe razlikuju, ali dalja hijerarhijska podела na sekundarne segmente je slična. Delovi oba segmenta su:
- komponente uočene na 2D slici:
 - atributi i
 - relacije i
- komponente koje određuju 3D model:
 - parametri orijentacije i
 - elementi.

Različita priroda komponenata zavisi od toga da li ih uvodi korisnik ili nastaju kao posledica funkcionalnog povezivanja sa drugim komponentama. Na osnovu toga komponente može da:
- uvede korisnik (primarne komponente) ili
- generiše računar (sekundarne komponente) 71.

Relacije i atribute koji su u konačnosti uvodi korisnik. Atributi koji su u beskonačnosti, orijentacija i položaj elemenata spadaju u automatski deo sistema. Automatski deo sistema čine dva osnovna procesa:
- orijentacija i
- modelovanje.

71 U primerima u okviru ovog istraživanja neke sekundarne komponente ipak generiše korisnik, jer ne postoji softver koji u potpunosti odgovara toku kreirane procedure. Bitna karakteristika sekundarnih komponenata je, dakle, da one mogu biti generisane putem računara, odnosno one ne zahtevaju obavezno učešće korisnika te mogu sačinjavati automatski deo sistema.
Orijentacija je utvrđivanje položaja centra perspektive (segment 1) ili međusobnog položaja fotografija (segment 2) na osnovu atributa i relacija. Modelovanje se odnosi na određivanje položaja elemenata u zavisnosti od atributa i relacija.

Komponente u sistemu povezane su odgovarajućim vezama. Veze mogu biti:
- strukturalne veze i
- funkcionalne veze.

Strukturalne veze označavaju grananje komponenti sistema i određuju segmente sistema.
Funkcionalne veze definišu uticaj jedne komponente ili segmenta sistema na drugi i jednosmerne su. Ako postoji funkcionalna veza između dve komponente, to znači da jedna komponenta utiče na drugu, ali ne i da je u potpunosti određuje. Stepen uticaja je složen, te je njegovo shematsko označavanje svedeno na naznaku da li veza postoji ili ne. U narednim shemama sistema sve funkcionalne veze su označene istim simbolima (tačan uticaj objašnjen je u prethodnim odeljcima, 3.2 i 3.3).

Kompletna procedura generisanja prostora na osnovu slika predstavlja odabir mogućih putanja koje vode od ulaznih podataka uočenih na 2D fotografiji do izlaznih podataka, odnosno 3D modela.

Shematski prikazi odnosa je dati su na slikama 124 i 125. Na slici 124 prikazan je shematski prikaz veze između jedne 2D slike i 3D modela, a na slici 125 shematski prikaz veze više 2D slika i 3D modela.

Radi povećanja čitljivosti sheme nije prikazana kompletna hijerarhija sistema. Ukoliko ceo segment ostvaruje istu funkcionalnu vezu sa drugim delom sistema, njegove komponente nisu prikazane. Segmenti koji nisu funkcionalno povezani sa drugim delovima sistema nisu prikazani u shemi.

Sistem koji je prikazan u celiosti ilustruje moguće tokove procesa generisanja 3D modela na osnovu jedne ili više 2D slika. Komponente koje unosi korisnik su relacije i atributi koje uočava na slici. Komponente koje grade model su elementi i parametri orijentacije. Izborom pogodne putanje proces generisanja prostora na osnovu slika je primenjen za rešavanje realnih problema.
Legenda:

- Automatski generiran deo sistema
- Strukturnalne veze
- Komponente i segmenti koje unosi korisnik
- Funkcionalne veze

Slika 124. Shema generiranja prostora na osnovu jedne slike.
Legenda:

- Automatski generiran deo sistema
- Strukturalne veze
- Komponente i segmenti koje unosi korisnik
- Funkcionalne veze

Slika 125. Shema generisanja prostora na osnovu više slika.
4 PRIMENA OPISANOG SISTEMA NA GENERISANJE PROSTORNIH MODELDA OBJEKATA GRADITELJSKOG NASLEDA

Graditeljsko nasleđe je sve što je u prošlosti bilo sagrađeno, a ima određene spomeničke vrednosti koje ga valorizuju i na osnovu kojih se utvrđuje potreba za njegovim očuvanjem (Nenadović 1980). Građena sredina se neprestano modificira i razvija, prostorni koncepti se smenjuju i faze transformacije mesta često se gube. Na trajnost spomenika utiču prirodne pojave, društvene pojave, eksploatacija prirodnih bogatstava, razvoj savremenih struktura i uzroci koji se nalaze u samom spomeniku. (Nenadović 1980). Nekorišćeni, nezaštićeni i neodržavani objekti ubrzano propadaju usled prepunstanja spontanom delovanju faktora okruženja. Postepeno propadanje odvija se u toku vremena. Objekti koji izgube krovni pokrivač, veoma se brzo razgrađuju. Na ovim prostorima primarni faktor usled kojeg dolazi do umanjena svesti o značaju graditeljskog nasleđa i njegovom zapuštanju su društveni problemi, politička i ekonomska previranja prisutna poslednjih decenija.

Postoji velik broj značajnih objekata i kompleksa koji nikad nisu uvršteni u fond graditeljskog nasleđa, ili iz nekog drugog razloga nisu snimljeni i/ili zaštićeni. Način valorizacije vrednosti prostora i odluke o tome koji objekt treba da bude zabeležen, takođe se periodično menjaj. Često se zbog neadekvatne i neažurne valorizacije graditeljskog nasleđa ili zbog nedostatka mogućnosti, vredni spomenici ne održavaju, usled čega ubrzo i propadaju, ne ostavljajući nikakav trag o svom postojanju (Boehler i Heinz 1999; Nenadović 1980).

Nije moguće odrediti opšti optimalni pristup očuvanju spomenika jer je on različit za svaki pojedinačni slučaj. Principi koji su danas prihvaćeni kao putokazi za odnos prema graditeljskom nasleđu su očuvanje autentičnosti, podjednak poštovanje svih stilova na istom spomeniku, poštovanje svih vrednosti i veza spomenika i mesta na kojem je nastao (Nenadović 1980).

Najveći problem u tehničkoj zaštiti spomenika je što se vrlo retko pouzdano zna kako su porušeni ili oštećeni spomenici nekada izgledali (Nenadović 1980). Snimanje objekata graditeljskog

72 U prirodne pojave spadaju atmosferilije, temperaturne promene, erozije, vulkani, zemljotresi, požari, biljni i životinjski svet; u društvene pojave spadaju ratovi, revolucije, ideološke borbe, društveni prekreti, odnos stanovništva prema spomenicima; u razvoj savremenih struktura spadaju urbanizacija, saobraćaj, industrija i drugo; i u uzroke koji se nalaze u samom spomeniku spadaju upotrebljen materijal i tehnika građenja (Nenadović 1980).
Dokumentovanje graditeljskog nasleđa može se odvijati planirano ili spontano. Planirano dokumentovanje podrazumeva beleženje podataka o objektu u cilju stvaranja tehničke dokumentacije. Takvi podaci treba da budu sortirani prema važećim pravilima (ukoliko postoje), jasni, precizni i pouzdani. Spontano dokumentovanje graditeljskog nasleđa je beleženje podataka o objektu (fotografije, razglednice, umetničke slike i crteži, duborezi, gravire, bakrorezni, deskripcije objekata i radova i drugo) koje se ne vrši u cilju dokumentovanja graditeljskog nasleđa.

Spontano beleženje spomenika kulture je stalno prisutno. Planirano beleženje i svet o značaju dokumentovanja nasleđa o spomeniku intenzivno se razvija u renesansnom periodu. U početku se spontano beleženje prepliće sa idejom planskog pristupa. Najveći broj zabeleški o spomenicima u toku renesanse imale su za cilj studiranje suštine i ideje antičkih struktura i stilova, radi njihove primene u omišljavanju novih objekata, a ne dokumentovanje ostataka. Ipak, u renesansni se može uočiti interesovanje i briga o sudbinah antičkih ostataka, i potreba za sistematskim prikupljanjem podataka. Alberti je u svom traktatu O stvarima građenja (De re aedificatoria), priložio veoma kvalitetne crteže antičkih građevina. Takođe je istakao brigu za antičko nasleđe negodujući protiv preduzimački koji ‘nemaju da grade drugačije osim da prvo sruše sve što se nalazi na mestu gradnje’ (Jokilehto 1986). Martini (Francesco di Giorgio Martini, 1439-1502), takođe zabrinut zbog unistiavanja antičkih spomenika, beležio je objekte. Svaki objekat prikazivao je kroz osnove, fasade, aksonometrije i detalje, ali često neprecizno i sa brojnim greškama (slika 126). U 16. i 17. veku arhitekti neguju sličan odnos prema beleženju graditeljskog nasleđa, ali se crteži i analize građevina usavršavaju, postaju precizni i konzistentni (slika 127). Distribucija crteža i analiza postaje masovna u skladu sa razvojem i dostupnošću štampe.

73 Bruneleski je, na primer, premeravao i crtao antičke građevine da bi ih izučavao i analizirao, a ne radi čuvanja podataka o antičkim ostacima.
U 18. veku kao posledica dostupnosti transporta i poaje velikog broja 'putnika' čiji je cilj obilazak određene destinacije, razvija se novi pristup beleženju graditeljskog nasleđa. Prikazi (vedute) koji su i ranije postojali, dobile su srhru današnjih razglednica, te su masovno kreirani u ovom periodu. Neke slike su prikazivale realan prostor (veduta esatta) (slike 128 i 130a), a druge ne. Kako je cilj bio uspomena na određen ambijent, mnogi prikazi su oslikavali nepostojeći prostor na kojem su proizvoljno poređana sva značajna obozna (slika 129) ili imaginarni pejzaž koji su zamišljeni u određenom duhu (slika 130b) (vedute ideate ili veduta di fantasia)). Verodostojni crteži i slike građenog okruženja su ostali najprecizniji način beleženja prostornih struktura, sve do poaje fotografije.

 b) Via Appia Immaginaria, preuzeto sa http://cronologia.leonardo.it, 02.2011.

Prethodno opisani izvori podataka o graditeljskom nasleđu odnose se na objekte koji ne postoje ili su izmenjeni. Snimanje postojećih objekata je mnogo složenijih problem jer postoji mnogo više alternativnih metoda.

Dokumentovanje postojećeg fonda graditeljskog nasleđa može se podeliti u nekoliko osnovnih faza. Prva faza je priprema u okviru koje se vrši odabir tehnike koja će biti korišćena, druga je snimanje, a treća obrada podataka (Pavlidis i drugi 2007). Odabir prikladne metode snimanja zavisi od specifičnosti objekta. Odabir se vrši na osnovu: veličine i oblika objekta, njegove kompleksnosti, okruženja i uslova snimanja, očekivane tačnosti snimanja i finansijskih ograničenja projekta.

Fotografije postojećih objekata su veoma pogodan izvor podataka u nekim situacijama i imaju prednosti u odnosu na druge metode snimanja. U poređenju sa merenjem objekata, dimenzionisanje na osnovu digitalnog fotogrametrijskog modela je brže, efikasnije i zahteva manje terenskog rada. U odnosu na savremene uređaje za daljinsku detekciju kao što su laserski skeneri, fotogrametrijski modeli su manje precizni, ali su značajno ekonomičniji (Stojaković i Tepavčević 2009).

Tendencija masovne digitalizacije podataka o graditeljskom nasleđu prisutna je poslednjih decenija. Savremeni arhivi graditeljskog nasleđa poseduju mnogo više pogodnosti nego što je to bio slučaj ranije, zahvaljujući dometima savremenih digitalnih tehnologija. Svrha snimanja objekata graditeljskog nasleđa je da (Latelier 2007):

- omogući indentifikaciju, shvatanje, interpretaciju i prezentaciju graditeljskog nasleđa,
- trajno zabeleži spomenike, objekte, grupe i mesta, narocito oštećene i ugrožene,
- obezbedi potpune verodostojne informacije za strategije lokalnog planiranja.

Osnovne prednosti virtualne baze podataka su sledeće: velike količine međusobno povezanih podataka različitog tipa se lako klasifikuju i pretražuju; brza razmena informacija omogućena je umrežavanjem računara; čuvanje, prikaz i analize trodimenzionalnih modela su veoma praktične.

Cilj primene sistema za generisanje prostorna na osnovu perspektivnih slika prikazanog u ovom radu je kreiranje digitalnih modela koji su prilagodljivi za dalju upotrebu. Opisani proces generisanja trodimenzionalnih modela objekata graditeljskog nasleđa na osnovu perspektivnih slika primenjen je na nekoliko reprezentativnih primera. Prostorne strukture su odabrane iz skupa objekta i kompleksa arhitektonskog kulturnog nasleđa na teritoriji Vojvodine. U toku izučavanja i valorizacije praktičnog značaja predloženih metoda najveća pažnja posvećena je sakralnoj arhitekturi i tipičnim širim prostornim okruženjima. Četiri primera su detaljno prikazana radi ilustracije praktične primene razvijenog postupka.
Opisana interpretacija generisanja prostora na osnovu slika je poluautomatski sistem za generisanje prostornih struktura. Sistem za generisanje prostora na osnovu perspektivnih slika koji je opisan u prethodnom odeljku prilagođen je građenom okruženju i istorijskom kontekstu. Softver koji bi bio potpuno prilagođen ovom sistemu ne postoji. Problemi u segmentima sistema, koji bi trebalo da budu procesirani automatski, dakle, moraju biti izvršeni:

- korišćenjem geometrijskih konstrukcija, ili
- u nekoj od postojećih komercijalnih aplikacija.

Upotreba i način rada postojećih aplikacija nisu tema ovog istraživanja. Zbog toga, su korišćene geometrijske konstrukcije gde god je to moguće. Na primer, fotogrametrijska orijentacija ne može da bude izvršena bez upotrebe prilagođenog softvera, te je izostavljena u narednim primerima.

Prednost pri odabiru primera je data generisanju prostora na osnovu jedne fotografije, jer postojeće aplikacije namenjene za taj proces imaju više nedostataka koji će biti jasnije ilustrovani kroz primere. Postoje jednostavni slučajevi kod kojih se primenom jednog segmenta sistema dolazi do željenog rezultata, i složeni slučajevi gde je neophodno kombinovanje različitih delova sistema.

Upotrebna vrednost sistema najbolje se vidi primenom na složene slučajeve. Složenost problema je veća ukoliko je:

- trenutno stanje prostorne strukture lošije,
- otežan pristup objektu,
- izražena promena forme u toku vremena ili
- kvalitet i kvantitet ulaznih podataka ograničen.

Poznavanjem mogućnosti i ograničenja sistema za generisanje prostora na osnovu slika za svaki pojedinačni slučaj izabran je odgovarajući način korišćenja sistema.
4.1 JERMEŃSKA CRKVA U NOVOM SADU

4.1.1 POSTOJEĆE STANJE I ULAZNI PODACI

Crkva svetog Petra i Pavla poznatija kao Jermenska crkva u Novom Sadu građena je 1746. godine, i nalazila se užem gradskom jezgru. 1965. godine crkva je srušena u urbanoj rekonstrukciji prosecanja bulevara.

Većina snimaka prikazuju ovu crkvu okruženu starim objektima koji su takođe srušeni (slika 131), i zbog toga je teško izvršiti orijentaciju fotografije. Ukoliko je slikom obuhvaćeno šire prostorno okruženje, na crkvi se ne vidi dovoljno detalja za modelovanje.

Objekti koji su vidljivi na fotografiji su crkva (u sredini), objekt na bulevaru (Interservis, levo) i objekt u ulici Narodnih heroja (desno). Osim crkve, druga dva objekta postoje i danas i odnos između njih može se razmeriti na urbanističkoj podlozi (slika 133).

4.1.2 GENERISANJE PROSTORA NA OSNOVU JEDNE PERSPEKTIVNE SLIKE

1. Orijentacija fotografije
 Na izabranoj fotografiji mogu se uočiti ravni fasada i na njima karakteristični vertikalni i horizontalni pravci. Većina pravih koje su uočene na fotografiji mogu se svrstati u jednu od sledećih
kategorija: pravac \(a\) – horizontalni pravac objekta na bulevaru, pravac \(b\) - horizontalni pravac objekta u ulici Narodnih heroja, pravac \(c\) - horizontalni pravac fronta crkve i pravac \(v\) - pravac vertikala. Korišćenjem relacije incidencije jednostavno se određuju i nedoglednice karakterističnih ravni: horizontalnih ravni \(\chi\) \(\left(\chi_n \in \{N_a, N_b, N_c\}\right)\), ravan fasade objekta na bulevaru \(\alpha\) \(\left(\alpha_n \in \{N_a, N_v\}\right)\), ravan fasade objekta u ulici Narodnih Heroja \(\beta\) \(\left(\beta_n \in \{N_b, N_v\}\right)\) i ravan fronta crkve \(\gamma\) \(\left(\gamma_n \in \{N_c, N_v\}\right)\).

Za određivanje položaja centra perspektive, potrebno je dovoljno pouzdanih odnosa među ovim elementima. Položaj crkve nije poznat, te se informacije o njoj ne mogu koristiti za orijentaciju. Jedino što posmatrač može pouzdanije da pretpostavi je da su vertikale \(v\) normalne na horizontalnu ravan \(\chi\). Na osnovu ove relacije geometrijsko mesto centara perspektive je kružnica konstruisana u ravan normalnoj na ravan slike sa centrom \(C_C\) na polovini normale iz nedogleda \(N_v\) na nedoglednicu \(\chi_n\). Dakle, potrebno je uvesti još jednu relaciju. Poznat odnos između dva postojeća objekata na slici je stoga ključan.

Neophodno je poznavati ugao između objekta na bulevaru (pravac \(a\)) i objekat u ulici Narodnih heroja (pravac \(b\)) je 58°. Ovaj podatak je dobijen merenjem urbanističke podloge. Uvođenjem oštroga ugla između pravih \(a\) i \(b\), centar perspektive mora da pripada torusu kojem je osa duž \(N_b\) \(\chi_n\) a kružnica konstruisana korišćenjem odgovarajućeg ugla. Konstrukcija centra kružnice torusa \(C_T\) je prikazana u ravi (slika 134).

Centar perspektive nalazi \(P\) se na prodoru kružnice kroz torus (slika 135).

Radi detaljnije ilustracije postupka pronalaženja centra perspektive na slici 136 je prikazana konstrukcija obaranjem karakterističnih ravni u ravan fotografije.

Ravan \(\pi\) je ravan koja sadrži pravac vertikala \(v\) i upravna je na ravan fotografije. To znači da ona sadrži nagibnice ravni \(\chi\) prema ravi fotografije, pa je nedoglednica \(\pi_n\) normalna na
nedoglednicu χ_n. Zbog toga se u ravni π nalazi se kružnica na kojoj je centar perspektive P. Obaranjem oko nedogledice π_n dobijamo kružnicu u pravoj veličini. Na njoj se nalazi oborena projekcija centra perspektive P_n, na udaljenosti koja je jednaka udaljenosti od nedoglednice π_n.

Obaranjem oko nedoglednice χ_n dobijamo kružnicu nad tetivom N_aN_b takav da je centralni ugao $N_aC_1N_b = 56^\circ + 2 = 112^\circ$. Na toj kružnici se mora nalaziti oborena projekcija centra perspektive P_{χ}. Prava veličina rastojanja P_{χ} od nedoglednice χ_n je konstruisana obaranjem upravne ravni, odnosno, vidi se u oborenoj projekciji ravni π.

Slika 136. Konstrukcija centra perspektive u ravni fotografije.

Postoje dva preseka torusa i kružnice, odnosno dva moguća položaja centra perspektive P_1 i P_2. Radi poređenja i daljeg objašnjenja konstruisane su sve projekcije oba rešenja koja odgovaraju mogućem položaju centra perspektive ($P_{f1}, P_{\pi1}, P_{\chi1}$ i $P_{f2}, P_{\pi2}, P_{\chi2}$). Na različite načine može biti određeno koja od te dve tačke je tačno rešenje, bez potrebe za uvođenje dodatnih relacija. U ovom slučaju očigledno je da je distanca tačke P_2 nerealna, i da fotograf nije mogao biti toliko udaljen u trenutku snimanja. Osim toga, glavna tačka P_f ne mora biti tačno na sredini fotografije, ali ne može biti udaljena onoliko koliko je udaljena projekcija P_{f2}. Drugi način je proveza odnosa na slici koji ne moraju biti tačni, već samo okvirni. Na primer, nedogledi N_{S1} i N_{S2} su obeleženi na nedoglednici χ_n, 135
kao nedogledi vidljivih uličnih pravaca. U slučaju centra perspektive P_1 ugao između njih je 105°, a u slučaju centra perspektive P_2 ugao je 64°. Na osnovu urbanističke podloge sigurno je da drugi slučaj nije tačan. Napominjemo da ovi uglovi nisu tačni, jer nije poznato da li je ulica horizontalna, i korišćena je samo jedna projekcija prave, što nije dovoljno precizno. Gruba procena ovih uglova služila je samo za poređenje rezultata P_1 i P_2.

2. Modelovanje
Crkva je modelovana korišćenjem softvera. Kao početni element odabrana je ravan fronta crkve, γ_1. U odnosu na nju je razmeravanjem jednakih dužina na pravcu c postavljena osa simetrije fronta v_{sim}. Ostale ravnine paralelne sa γ su vezane za model korišćenjem horizontalnih pravih d (pravac bočne fasade tornja) vidljive na modelu. Pretpostavimo da je pravac d upravan na pravac c. Prvo uočimo tačku, na primer D_1^c koja pripada ravi γ_1. Pošto je poznata projekcija tačke $(DoF_{D_1}^{C,Tr} = 2)$ i ona pripada ravi $(DoF_{D_1}^{C,Rt} = 1)$ poznat je položaj tačke D_1 u prostoru. Potom je uočena projekcija prave d_1^C $(DoF_{d_1}^{C,Tr} = 1, DoF_{d_1}^{C,Rt} = 1)$ poznatog nedogleda $(DoF_{d_1}^{C,Rt} = 2)$ koja sadrži tačku D_1 $(DoF_{d_1}^{C,Tr} = 2)$, pa je i položaj prave poznat u prostoru (slika 137). Obrnutim procesom nalazimo položaj svih ravnih paralelnih sa γ_1.

Kose ravnine (zabat, portal) su modelovane tako što im pripadaju bar dve poznate prave, a to su bar jedna prava pravca d koju kosa ravan sadrži, i jedna kosa prava koja je određena svojom projekcijom i time što je paralelna sa ravan γ. Na primer (slika 138), ravan na portalu τ, sadrži prave d_1, d_2 i t_1^C, koje su poznate (za bilo koje dve poznate prave $DoF_{\tau}^{C,Tr} = 1$, $DoF_{\tau}^{C,Rt} = 2$). Prave pravca d, konstruisane kroz poznate tačke na ravi γ_1. Za pravu t_1 je poznata projekcija t_1^C, nedogled $N_1 = \gamma_2 \cap t_1^C$ i jedna poznata tačka koja joj pripada (na ravi γ_1).

Krov tornja je složene strukture i odgovara je geometrijskom telu dobijenom presecanjem dva polucilindara. Osim toga, uglovi su malo zasećeni, što je u modelovanju zanemareno. Ose cilindara (c_1 i d_1) su pravca c i d i moraju sadržati centar bazisa tornja T koji lako nalazimo kao presek njegovih dijagonal. Vertikala v_T $(DoF_{v_T}^{C,Rot} = 2)$ koja prolazi kroz T $(DoF_{v_T}^{C,Tr} = 2)$ je

\begin{figure}[h]
\centering
\subfigure[137. Konstrukcija ravnine iz skupa γ.]{
\includegraphics[width=0.3\textwidth]{slika137}
\label{fig:slika137}
\}
\hspace{1cm}
\subfigure[138. Konstrukcija kose ravnine.]{
\includegraphics[width=0.3\textwidth]{slika138}
\label{fig:slika138}
\}
\hspace{1cm}
\subfigure[139. Konstrukcija krova tornja.]{
\includegraphics[width=0.3\textwidth]{slika139}
\label{fig:slika139}
\}
\caption{Konstrukcija ravnine iz skupa γ, kose ravnine, krova tornja.}
\end{figure}

Model celog objekta obuhvata deo vidljiv na slici, odnosno ravan fronta i tornj crkve (slike 140 i 141).
4.2 VIRTUELNA REKONSTRUKCIJA KAPELE SVETOG VENDELINA U KLJAJIĆEVU

4.2.1 POSTOJEĆE STANJE I ULAZNI PODACI

4.2.2 GENERISANJE PROSTORA NA OSNOVU JEDNE PERSPEKTIVNE SLIKE

1. **Orientacija fotografije**

Restitucija perspektivne slike zavisi od oblika strukture koja je prikazana na fotografiji. Za početak analize kapele u Kljajićevu, pogodno je uočiti da se većina pravaca može svrstati u jednu od tri grupe – \(a \), \(b \) ili \(v \). Pravci \(a \) i \(b \) su horizontalne prave koje su međusobno upravne i prostiru se paralelno sa poprečnim odnosno podužnim osama građevine, respektivno. Pavač \(v \) je pravac vertikala. Na fotografiji je moguće uočiti da je nedogled vertikala u konačnosti, što odgovara i činjenici da je linija horizonta ispod glavne tačke, što znači da je ravan film bila delimično nagnuta u odnosu na vertikalnu ravan.

Ukratko, pravce \(a \), \(b \) i \(v \) čine ortogonalni trokrak međusobno upravnih pravih. Odatle sledi da su i uporedni zraci \(s_a \), \(s_b \) i \(s_v \) takođe tri međusobno upravne prave. Centar perspektive \(P \) nalazi se na preseku tri lopte konstruisane nad dužima \(N_aN_b \), \(N_bN_v \) i \(N_vN_a \).

U ovom slučaju nije neophodna prostorna konstrukcija. Centar perspektive je detektovan u oborenoj projekciji u ravnini fotografije. Čitav proces generisanja prostora na osnovu jedne fotografije u ovom primeru prikazan je obaranjem u ravan fotografije. Na ovaj način procedura je prikazana veoma detaljno.

Presek uporednih zrakova \(s_a \), \(s_b \) i \(s_v \) je centar perspektive \(P \). Prodor uporednih zrakova kroz ravan slike definiše nedoglede karakterističnih pravaca \(N_a \), \(N_b \) i \(N_v \). Uočimo trostranu piramidu čiji je vrh centar perspektive \(P \), ivice su uporedni zraci, a trouglo \(N_aN_bN_v \) bazis. Zbog navedenih osobina ove piramide poznato je da ortogonalna projekcija vrha \(P \) na ravan bazisa (odnosno na ravan fotografije), \(P_f \), mora biti ortocentar trougla \(N_aN_bN_v \) (slika 144).

![Slika 144. Odnos vidnih zrakova tri međusobno upravna pravca i centra perspektive.](image-url)

Pronalaženje karakterističnih nedogleda, omogućava direktno uočavanje nedoglednica fasadnih ravni. Svaka dva karakteristična pravca definišu skup karakterističnih paralelnih ravni. Kako
su poznati nedogledi ovih pravaca, lako se uočavaju nedoglednice \(\alpha_n = N_aN_v, \beta_n = N_bN_v \) i \(\chi_n = N_aN_b \). Ravan fronta označena je kao ravan \(\alpha \), ravan bočne fasade je \(\beta \), a horizontalna ravan osnove je ravan \(\chi \).

Oko svake od tih nedoglednica oboren je centar perspektive \(P \). Da bi se dobilo rastojanje od centra perspektive do nedoglednice ravnja u pravoj veličini, prvo se obara trougao koji sadrži centar perspektive \(P \), njegovu projekciju \(P_f \) i drugu nagibnicu odgovarajuće uporedne ravnja. Kako je distancija centra perspektive i dalje nepoznata, pri ovim obaranjima uvek je korišćen nedogled normale ravnja, odnosno činjenica da je normala upravna na nagibnicu. Nakon toga moguće je naći oborenu projekciju centra perspektive, odnosno oborenu uporednu ravan, što je neophodno za razmeravanje dužina i uglova.

Oborene projekcije centra perspektive \(P_\alpha \), \(P_\beta \), i \(P_\chi \) su dobijene redom obaranjem oko odgovarajućih nedoglednica \(\alpha_n, \beta_n \) i \(\chi_n \). Radi provere, označen je distantni krug, na kojem se nalaze distance koje su dobijene u sva tri obaranja i koje naravno moraju biti istih dužina (slika 145).

![Diagram](image)

Slika 145. Konstrukcija distance.
Nakon konstrukcije projekcije centra perspektive na ravan fotografije i distance završena je faza orientacije fotografije. Sljedeća faza je 3D modelovanje.

2. 3D modelovanje

3D modelovanje je vršeno postepeno: prvo obaranjem fasadnih ravnih, konstrukcijom tornja, konstrukcijom kontrfora i na kraju povezivanjem svih elemenata.

![Slika 146. Obaranje fasadnih ravnih.](image)

a. Fasadne ravnine

Ukoliko se u nekoj ravni nalaze složeni elementi ili više broj potrebnih dimenzija, pogodno je tu ravan oboriti. Prema tome, fasadne ravnine, front i bočne fasade, će biti konstruisane obaranjem u ravan fotografije. Potrebni atributi, nedogledi N_α, N_β i N_γ i nedoglednice α_n, β_n i χ_n, su već detektovani na slici.

Ravni fasada α i β oborene su oko pogodnih frontala. Frontalne prave f_α i f_β su proizvoljne prave paralelne sa nedoglednicama α_n i β_n. Razmera oborenih ravnih je usklađena naknadno. Dakle, za svaku horizontalnu i vertikalnu pravu u ravni fasada, poznata je projekcija $(DoF^{C,Tr} =$
1, DoF_{C,Rot} = 1), pravac odnosno nedogled (DoF_{C,Rt} = 2) i ravan kojoj pripada ((DoF_{C,Tr} = 1, DoF_{C,Rot} = 1). Poznavajući ove osobine, jednostavno se mogu pronaći tačne pozicije, kao i oborene projekcije svih tačaka ravni α i β (slika 146).

Preciznost najviše zavisi od jasnoće fotografije. Ravan fronta je na fotografiji pogodno postavljena i nema dvosmislenosti oko pronađenja oborene projekcije. Nasuprot tome bočna fasada je teško saglediva zbog kontrfora koji je zaklanjaju kao i zbog položaja ravni na fotografiji, gde ravan inicira sečenje pravih pravca ν sa frontalom pod oštrim uglom.

Pri obaranju bočne fasade (ravni β) postoji potreba za detaljnijom proverom dobijenih rezultata. Radi veće preciznosti korišćena je dopunska relacija ponavljanja, pretpostavka da su kontrfori i prozori na istom rastojanju, kao i da je front potpuno simetričan.

b. Toranj

Nijedna strana tornja se ne nalazi u nekoj od karakterističnih fasadnih ravni i sve su dimenzije prednje strane tornja prenete na ravan α. Toranj je vezan za model korišćenjem ravni simetrie β, pretpostavljajući da se krst nalazi na sredini. Projekcija prave b₁ pravca b koja prolazi kroz sredinu krsta sadrži tačku u središtu krsta M i nedogled N₁. Pošto je poznata projekcija prave b₁ (DoF_{b₁} = 1, DoF_{C,Rt} = 1) i ravan β kojoj pripada (DoF_{b₁} = 1, DoF_{b₁} = 1), poznat je i položaj prave b₁. Analogno tome poznat je i položaj vertikale ν₁ (vertikala kroz središte krsta). Dakle središte krsta M je poznato, jer je tačka M ∈ b₁ (DoF = 2) i M ∈ ν₁ (DoF = 2) (slika 147).

Relacija ponavljanja na različitim pravcima (α i b) iskorišćena je za proveru pretpostavke da je tornaj kvadratne osnove. Konstrukcija provere je izvršena uvođenjem nedogleda N_{45-1} i N_{45-2} koje definišu pravac simetrala između duži α i b. Ovi pravci služe i za proveru modela tornja.

![Slika 147. Konstrukcija tornja.](image-url)
c. Kontrfori

Na fotografiji se mogu uočiti dva tipa kontrfora. Jedan su bočni kontrfori koji su postavljeni u pravcu $a - b$, a drugi su ugaoni kontrfori koji su koso postavljeni na fasadne ravnine.

Pravac kosih ivica bočnih kontrfora u vertikalnoj ravni α označen je sa d. Prave pravca d definisane su svojom projekcijom $(\text{DoF}_{C,TR}^c = 1, \text{DoF}_{C,RT}^c = 1)$ i paralelnošću sa poznatom ravni α $(\text{DoF}_{C}^c = 1)$. Time je određen samo pravac tih pravih, odnosno nedogled N_d ($N_d = a_n \cap d^c$). Tačna položija bočnih kontrfora se dobija vezivanjem za poznate tačke u ravni fasade β. Restitucijom je izmereno da je ugaonog nagiba pravca d u odnosu na horizontalnu ravan približno 58° (slika 148).

Restitucija kontrfora koji su na uglu objekta je nešto složenija.

Osnova ovog kontrfora je postavljena pod 45° u odnosu na pravce a i b, što je relacija preuzeta iz fotografetrijskog modela. Ravan profila kontrfora (ξ) paralelna je sa horizontalnim pravim koje su pod 45° u odnosu na pravac a $(\text{DoF}_{C,RT}^c = 1)$ i vertikalnim pravim v $(\text{DoF}_{C,RT}^c = 1)$. Dakle, poznata je samo nedoglednica ravni ξ_n $(\xi_n = N_{1-45}N_v)$. Ravan ξ je oborena oko pogodne frontale f_ξ (slika 149), čime je dobijena relativna prava veličina profila. Međutim, pozicija kontrfora i razmera profilja još nisu poznate.

Interesantno je primetiti da je obaravanjem ravnog ugla dobio da je nagib kosti ravne ugla približno 49°, što dosta odstupa od nagib kosti ravne bočnih kontrfora. Međutim, kad se izvrši projiciranje na ravan fronta, prave koje definisu nagib kod oba tipa kontrfora su paralelne u pogledu spreda. Kako se dužine (nalegle katete) ovih uglova odnose kao $1: \sqrt{2}$, a visine (naspramne katete) su jednake, možemo zaključiti da je količnik tangensa ovih uglova $\sqrt{2}$. Ukoliko zamenimo računski:

$$\frac{tg58^\circ}{\sqrt{2}} = 1,13,$$

$$\text{arctg}1,13 = 48,6^\circ \approx 49^\circ.$$

Rezultat potvrđuje zaključak dobijen grafičkom konstrukcijom (projiciranjem ugaonog kontrfora na ravan fronta).

Naredni korak je razmatranje položaja kontrfora nalazi u odnosu na fasadne ravnine.

Pravac označen sa c definise nagib kosti ravne ugla ugaonog kontrfora. Prave pravca c definisane su svojom projekcijom $(\text{DoF}_{C,TR}^c = 1, \text{DoF}_{C,RT}^c = 1)$ i činjenicom da su paralelne sa poznatom snopom ravni ξ $(\text{DoF}_{C,RT}^c = 2)$. Time je određen samo pravac tih pravih, odnosno nedogled N_c ($N_c = \xi_n \cap c^c$).

Neka je γ skup ravni koje su paralelne sa pravcem c $(\text{DoF}_{C}^c = 1)$ i pravcem $''45 - 2''$ $(\text{DoF}_{C}^c = 1)$, čime je određena nedoglednica γ_n $(\gamma_n = N_cN_{45-2})$.

Za finalno pozicioniranje ugaonog kontrfora u odnosu na ravan fasada, upotrebili su nedogledi presećnica ravni γ sa ravnima α i β. Analogno prethodnim relacijama, nedogledi presećnica nalaze se u preseku nedoglednica odgovarajućih ravnih $(N_{\alpha\gamma} = a_n \cap \gamma_n, N_{\beta\gamma} = b_n \cap \gamma_n)$. Uočavanjem projekcije mesta preseka ravni fasade $(\alpha$ i $\beta)$ i kose ravn kontrfora (γ), ugaoni kontrfor je time vezan za model (slika 149).

Na osnovu ovih presećnica uočava se da osa simetrije ugaonog kontrfora ne prolazi kroz ugaon objekta, već je delimično izmeđuena. Pozicioniranje ugaonog kontrfora je veoma važan detalj,
jer ilustruje kompleksnost pravilnog vezivanja za model. Prikazani način je jedini postupak kojim se tačno dolazi do pozicije ugaonog kontrfora na 3D modelu. Korisnik koji modeluje ovakav objekat korišćenjem softverskih alata za restituciju, bez dobrog poznавanja ograničenja u procesu modelovanja bi lako mogao napraviti grešku. Zbog toga je uvodenje ograničenja i stepeni slobode sa jednoznačnošću prostornih projekcija bilo veoma značajno.

Kada je finalizirana restitucija fotografije kapele u Kljajićevu, kao rezultat su dobijene fasadne ravni u relativnoj razmeri (slika 150). Ujednačavanje razmere se jednostavno uspostavlja skaliranjem. Na osnovu poznatih izgleda, poznate su tačne koordinate svih vidljivih tačaka, te je moguće generisati sve ostale karakteristične poglede, kao što je, na primer, pogled odozgo (slika 151).

![Slika 148. Konstrukcija potrebnih atributa i analiza položaja elemenata.](image-url)
Slika 149. Konstrukcija kontrfora.

Slika 150. Proces restitucije.
4.2.3 GENERISANJE PROSTORA NA OSNOVU VIŠE PERSPEKTIVNIH SLIKA

Ovakvom vrstom modelovanja dobijen je trodimenzionalni prikaz postojećeg stanja kapele u Kljajićevu.
4.2.4 VIRTUELNA REKONSTRUKCIJA KAPELE U KLJAJIĆEVU

Za modelovanje delova objekta koji više ne postoje, fotogrametrijski model korišćen je kao polazište. U softveru za modelovanje i animaciju uvezen je fotogrametrijski model i povezan je sa...
crtežima fasada koje su dobijene restitucijom fotografije (slika 154). Širina i visina su precizno automatski povezane. Pri uklapanju rezultata restitucije sa rezultatima fotogrametrijskog snimanja u podužnom pravcu se pojavilo razmimoilaženje od približno 3%. Kod fotogrametrijskog modela je moguća greška u generisanju dužine objekta, jer su ostaci takvi da ne postoji nijedan podužni zid u celini. Pri restituciji fotografije, moguća greška u generisanju dužine objekta može nastati usled toga što je na slici podužna fasada dosta skraćena i zaklonjena kontrforima. Zbog toga je kao referentna prihvaćena srednja vrednost dužine objekta.

Nakon usklađivanja fasada dobijenih restitucijom fotografije i modela dobijenog fotogrametrijskim modelovanjem, izvršeno je modelovanje delova koji više ne postoje (slika 155). Time je izvršena potpuna virtualna rekonstrukcija kapele (slika 156) (Stojaković i Štulić 2010).
Slika 156. Virtuelna rekonstrukcija kapele u Kljajićevu (Stojaković i Tepavčević 2009).
4.3 VIRTUALNA REKONSTRUKCIJA TORNJA CRKVE SVETOG RUDOLFA U BANOŠTORU

4.3.1 POSTOJEĆE STANJE, ULAZNI PODACI I ANALIZA RAZVOJA

Crkva je smeštena na ulazu u selo, na glavnom putu koji prati liniju obale Dunava. Kao posledica promene u strukturi stanovništva posle drugog svetskog rata, crkva dugo nije u upotrebi. Posledica neodržavanja objekta je njegovo veoma loše građevinsko stanje (slike 158 - 160). Pored toga, neposredno okruženje je toliko zapušteno da se od nabujale vegetacije ne može prići objektu, te on ne može biti direktno meren bez sprovođenja obimnog raščišćavanja terena (slika 159).

Slika 157. Crkva u Banoštoru 1913. godine (fotografija je vlasništvo Hanca Suprica (Hans Supritz).
Slika 158. Crkva u Banoštoru 1975. godine (Svečnjak 1975)

Spoljašnji izgled crkve je modelovan korišćenjem fotogrametrije, jer je objekat slobodnostojeci i nije bilo problema da se napravi pogodan niz vezanih fotografija za modelovanje. Unutrašnjost tornja takođe je fotografisana, iako je bilo veoma teško pristupiti ulazu. Funkcionalna stepeništa nisu postojala, već samo ostaci drvenih greda i to u gornjim delovima tornja. Osim toga, prostor u osnovi tornja kojem je čovek mogao da pristupi je veoma skučen, tako da nije bilo nikakve mogućnosti za slikanje fotografija pogodnih za upotrebu fotogrametrije. Iz istog razloga ni lasersko skeniranje ne bi bilo moguće. U ovom slučaju korišćen je širokogaoni objektiv, jer obuhvata veći prostor, što je veoma važno, a sferične deformacije slike (barrel) su ispravljene prilagođenom aplikacijom. Dakle, i za postojeći objekat, nekad je restitucija jedne fotografije (slika 161) najbolje rešenje za dimezionisanje modela objekta.
4.3.2 GENERISANJE PROSTORA NA OSNOVU VIŠE FOTOGRAFIJA

Za modelovanje tornja u Banoštoru pogodnije je prvo kreirati spoljni izgled objekta, jer su o njemu ulazni podaci potpuniji i precizniji.

4.3.3 GENERISANJE PROSTORA NA OSNOVU JEDNE FOTOGRAFIJE

Unutrašnjost tornja generisana je na osnovu jedne fotografije (fotografija je prikazana na slici 161). Karakteristični parametri slike su određeni na osnovu uočenih geometrijskih elementa. Tri pravca koja su pod pravim uglom su pravac vertikala \(v \), i horizontalni pravci koji definišu stepenišne podeste, \(a \) i \(b \). Na slici su uočeni nedogledi tih pravaca \(N_a, N_b \) i \(N_v \), redom. Nedoglednice karakterističnih ravnina dobijene su korišćenjem relacije incidencije, pa je \(\chi_n \) nedoglednica horizontalnih ravnina, \(\alpha_n \) i \(\beta_n \) nedoglednice vertikalnih ravnina paralelnih sa poprečnom i podužnom osom tornja. Ove ravnine ne mogu se poistovetiti sa snopom ravnina paralelnih sa unutrašnjim zidovima, jer se ne zna da li su zidovi vertikalni.
Za konstrukciju centra perspektive dovoljna su ova tri pravca. Centar perspektive nalazi se na preseku tri lopte konstruisane nad dužima N_aN_b, N_aN_v i N_bN_v. Na slici 164 prikazana je oborena konstrukcija u ravan slike.

Slika 162. Uglovi nagiba svake presečnice prema vertikali, pogled sa jugozapada

Slika 163. Nagib krova tornja, južna strana (levo), zapadna strana (desno).

Slika 164. Elementi slike.
Projekcija centra perspektive na ravan fotografije P_f je u ortocentru trougla $N_aN_bN_v$. Distancija centra perspektive (d_s) je konstruisana obranjem oko jedne poznate nedoglednice, na primer χ_n. Neka je ravan π ravan normalna na χ' i na ravan slike. Obaranjem uporedne ravni v_χ' oko nedoglednice χ_n, dobijena je oborena projekcija centra perspektive, P'_χ. On se nalazi na preseku kružnice nad prečnikom N_aN_b i normale nedoglednice π_n. Time je određena prava veličina rastojanja od tačke P do nedoglednice χ_n. Korišćenjem te veličine, nađena je oborena projekcija centra perspektive, $\pi_{n'}$, oko nedoglednice π_n. Pošto je ravan π normalna na ravan slike, u oborenoj projekciji vidi se distancija u relativnoj razmeri.

Za proveru položaja centra perspektive može biti korišćena i pretpostavka da su svi stepešni kraci imali isti nagib. Prilagođenom numeričkom provedom, ovaj podatak bi mogao da posluži za iterativno poboljšanje preciznosti pri određivanju položaja centra perspektive. U korišćenom softveru ne postoji mogućnost unosa takvih podataka, pa je prikazana samo analiza tih uglova (slika 165). Ovaj detalj ilustruje nedostatak softvera budući da aplikacije ne sadrže dovoljno širok dijapazon unosa mogućih relacija.

Neka su $s1$, $s2$ i $s3$ pravci stepenišnih kosih gređa. Oni su paralelni sa odgovarajućim vertikalnim ravnima α i β. Sledi da nedogledi N_{s1}, N_{s2} i N_{s3} moraju pripadati odgovarajućim nedoglednicama α_n i β_n. Obaranjem uporednih ravni v_α' i v_β' oko nedoglednice α_n i β_n određeni su uglovi između pravaca $s1$, $s2$ i $s3$ i vertikale v.

Razlike u vrednostima ovih uglova su 6°. Osim toga, preciznost određivanja nedogleda sa slike pokazuje odstupanje do $\pm 2^\circ$. Uzimajući u obzir da zidovi tornja možda nisu vertikalni, niti su ivice grede ravne, a da je cela konstrukcija stepeništa veoma oštećena, ovaj rezultat je sasvim zadovoljavajući i pokazuje da će prethodno detektovani centar perspektive takođe pružiti zadovoljavajuće rezultate.

![Slika 165. Uglovi nagiba stepenišnih krakova.](image-url)
4.3.4 VIRTUELNA REKONSTRUKCIJA TORNJA U BANOŠTORU

Virtuelna rekonstrukcija tornja u Banoštoru podrazumijeva modelovanje unutrašnjosti, spoljašnosti i njihovo međusobno uklapanje. Modelovanje unutrašnjeg izgleda vrši se na osnovu restitucije jedne slike, a modelovanje spoljašnjeg izgleda fotografetrijskim metodama. Uklapanje je izvršeno u softveru za 3D modelovanje.

Modelovanje unutrašnjosti je u ovom slučaju veoma zahtevno. Broj elemenata čije su geometrijske osobine poznate je mali. Stepenište koje treba modelovati ima složenu geometrijsku strukturu i veoma je ruinirano.

Početni element za modelovanje unutrašnjosti tornja su ravni zidova α_1, α_2, β_1 i β_2. Njihov pravac je poznat, presećnice su vidljive na slici, tako da je tačan položaj svake od ovih ravnih određen poznatom presećnicom kojom se ove ravnine vezuju za model $(D_{r_1}^{C,T_r} \alpha_1, \alpha_2, \beta_1, \beta_2 = 1)$ i poznatom ravni sa kojom je paralerna $(D_{r_1}^{C,R_t} \alpha_1, \alpha_2, \beta_1, \beta_2 = 2)$.

Produžavanjem zidova do nivoa tavanice, primećeno je da je ona uža od osnove tornja na nižem nivou. Prema tome, u gornjem segmentu zidovi nisu vertikalni. Osim toga postoji i ugaono zasecanje koje formira potporu krovu tornja. Ovakva geometrija mora biti veoma pažljivo vezana za model jer postoji mnogo trodimenzionalnih struktura slične kompozicije koji imaju istu dvodimenzionalnu sliku, a drugačiju proporcije u tri dimenzije. Na slici može biti uočena horizontalna ravan χ_1 koja definise nivo do kojeg su zidovi vertikalni. Ravan je određena projekcijama tačaka na presećnicama ravnih α_1, α_2, β_1 i β_2.

Jedini način da se tačno odredi visina horizontalne ravnin (χ_2) u kojoj je tavanica je da se iskoristi pretpostavka da je tornaj simetričan u pravcu podužne i poprečne vertikalne ravnice. Procedura je prikazana na slici 166. Neka je tačka A centar kvadratne osnove. Vertikala v_1 $(D_{v_1}^{C,R_t} = 2)$ sadrži tačku A $(D_{v_1}^{C,T_r} = 2)$, pa je i njen položaj poznat.

Osnova tavanice je osmougaona. Temena osmougalja su označena sa $T_1, T_2, ..., T_9$. Na slici se može odrediti projekcija tačke B koja je centar osnove tavanice. Ona može biti određena na više načina, a najbolje je uporediti više rezultata. Na primer, spajanjem naspramnih temena $(T_1 T_5, T_2 T_6, T_3 T_7, T_4 T_8)$ u vidljivom osmouglu, ili određivanjem središta duži pravca a $(T_a T_5, T_8 T_1)$ i pravca b $(T_2 T_3, T_6 T_7)$ (polovljenje tih duži je takođe moguće, jer su poznati nedogledi).

Tačka B, poznate projekcije B^C $(D_{B}^{C,T_r} = 2)$ mora pripadati pravoj v_1 $(D_{v_1}^{C,T_r} = 2)$. Najzad, kada je poznata jedna tačka koja pripada ravni tavanice χ_2 $(D_{\chi_2}^{C,T_r} = 1)$ i ravan sa kojom je paralerna $(D_{\chi_2}^{C,R_t} = 2)$, položaj ravni tavanice je određen.

Ostale ravnine unutrašnjih kosih zidova dobijene su na osnovu upotrebe relacije incidenca poznatih tačaka i pravih u horizontalnim ravnima χ_1 i χ_2.
Slika 166. Određivanje visine tavanice.

Sledeći korak je rekonstrukcija položaja stepenišnih podesta i modelovanje stepeništa. Pošto se zna da su nosači naslonjeni uz zidove čiji je položaj poznat kao i pravac pružanja svih nosećih greda i ugao nagiba stepeništa, ovi elementi se lako vezuju za model.

Prvo se stepenišni kraci i podesti pozicionirani u odnosu na sliku. Zatim je modelovan jedan stepenišni krak i jedan podest. Izabran je onaj koji ima najbolju poziciju u odnosu na ravan fotografije a da je u dovoljno očuvanom stanju. Na osnovu nekoliko očuvanih stepenika i vidljivih mesta gde su se ostali nalazili, krak je modelovan korišćenjem relacije jednakosti kao da oštećenja ne postoje.

Stepenišni kraci i podesti su multiplicirani na druge pozicije. Definisani su kao zavisni (instance clone), tako da se menjanjem jednog elementa, menjaju i sve identične strukture. Na taj način su potpuno usaglašene proporcije i dimenzije stepeništa (slika 167).

Konačna virtualna rekonstrukcija podrazumeva spajanje modela unutrašnjosti i spoljašnjeg modela tornja. Modeli su povezani preko prozora koji su vidljivi na spoljašnjoj i na unutrašnjoj strani tornja. Proverena je i visina tornja.

Modela tornja crkve u Banoštoru dat je na slikama 168 i 169.
Slika 167. Proces modelovanja stepeništa.

Slika 168. Model tornja u Banoštoru.
Slika 169. Spajanje fotogrametrijskog modela crkve i virtualne rekonstrukcije tornja: oltarska strana crkve (levo), bočna strana crkve (desno).
4.4 VIRTUELNA REKONSTRUKCIJA
MORFOGENEZA TRGA SLOBODE U NOVOM SADU

4.4.1 POSTOJEĆE STANJE, ULAZNI PODACI I ANALIZA RAZVOJA

Ovaj primer je drugačiji u odnosu na prethodno razmatrane primere, u kojima je generisan prostorni model pojedinačnih arhitektonskih objekata. Cilj ove studije slučaja je generisanje prostornog modela šireg urbanističkog okruženja i praćenje njegove transformacije u toku vremena.

Morogeneza, transformacija prostrana u funkciji vremena, omogućava uočavanje pojedinih zakonitosti koje se javljaju u karakterističnim vremenskim periodima i/ili na karakterističnim mestima i regionima. Morfološka struktura javnih prostora je rezultat kontinualnog razvitka gradova. Usled različitih sila, kao što su prirodno-topografske karakteristike mesta, ekonomski i kulturno-istorijski uticaji, prostorno okruženje trpe transformacije koje se mogu pratiti kroz različite vremenske periode (Stojaković i Tepavčević 2011b).

Morogenetskom analizom su praćene promene karakteristika u strukturi i funkciji Trga slobode u Novom Sadu kroz period od tri i po veka. Trg je neizgrađen prostor, čije granice oblikuju objekti koji ga okružuju. Morogenetski dinamički model trga kreiran je modelovanjem okolnih objekata, praćenjem forme i perioda modifikacija i razmeštanjem u pravilan prostorni položaj.

Trg slobode pripada grupi trgova koji su pretrpeli znatne transformacije u svojoj strukturi i to ne samo u pogledu fasadnog platna već i obliku, veličini i načinu ulijanja ulica na trg. Promene koje su se dogodile na pomenutom glavnom gradskom trgu Novog Sada naročito su značajne jer reflektuju razvitak različitih koncepcija javnih prostora i urbanističkih ideja.

Trg slobode u Novom Sadu (slike 170 i 171) je deo zaštićenog istorijskog jezgra grada, o čijem razvitku postoji dosta pisane i grafičke dokumentacije u odnosu na druge trgove u Vojvodini. Iako se konture prvih ulica grada, kao i pozicija Trga slobode može uočiti na planu iz 1716. godine, prvi grafički dokument iz kojeg se može proučavati prvobitna morfološka struktura trga je karta inženjera Kaltšmita (Caltschmidt) iz 1745. godine. Analizom panoramske karte Novog Sada iz 1698. godine kao i pomenutog plana može se pretpostaviti da su zabati kuća bili okrenuti ka ulici. Od 1885. godine izvori dokumentacija za analizu razvoja trga su bogatiji i obuhvataju pisane izvore o objektima na trgu, karte i planove i sačuvane stare razglednice i fotografije. (Tepavčević i Stojaković 2009; Stojaković i Tepavčević 2010b; Tepavčević 2008).
Slika 170. Planovi Trga slobode iz različitih perioda

- Plan iz 1884. godine (Petrović / Milisavac 1997) (leva)
- Urbanistička podloga (desno)

Slika 171. Poređenje planova Trga slobode iz različitih perioda.
Morfogenetska analiza dodaje vremensku komponentu virtualnoj rekonstrukciji. Zbog toga je ovaj primer složeniji i kompleksniji od prethodno navedenih i podeljen je u nekoliko segmenata.

Prvi segment je identifikovanje karakterističnih prelomnih momenata u kojima su se odigravale transformacije u strukturi trga. Izučavanjem građe o razvoju trga, uočene su karakteristične faze razvoja prema kojima je usklađena virtualna rekonstrukcija.

Drugi segment je snimanje i kreiranje 3D modela postojećeg stanja trga. Model postojećeg stanja je generisan korišćenjem terestrijalne i arialne fotogrametrije i proverom sa urbanističkim planovima i ortofoto snimcima. Rezultat ove faze je virtualna rekonstrukcija trenutnog stanja.

Treći segment je rekonstrukcija prethodnog stanja. Pod pojmom virtualne rekonstrukcije prethodnog stanja podrazumeva se generisanje 3D modela nepostojećeg ili izmenjenog prostora ili objekata prema podacima dobijenim iz fotografija i planova. Proces digitalne rekonstrukcije trga zahteva sinteznu uporednu analizu svih pomenutih tipova dokumentacionih zapisa, kao što su pisani izvori o nastanku sadašnjih i prethodnih objekata na trgu, kao i stari planovi i fotografije kojima su se mogle potvrditi i dopuniti informacije o starim objektima na trgu (Tepavčević i Stojaković 2009). Modelovanje ovih objekata vršeno je na osnovu jedne odabrane fotografije.

Sumiranjem svih rezultata kompletiran je nekadašnji izgled trga u karakterističnim etapama, dobijen primenom metoda restitucije perspektivnih slika, terestrijalne i aerofotogrametrije, preklapanjem postojećih i starih planova i kao finalni rezultat kreirani su 3D modeli koji prikazuju formu trga u određenom periodu (Tepavčević i Stojaković 2009, Stojaković i Tepavčević 2011b).

4.4.2 GENERISANJE PROSTORA NA OSNOVU VIŠE PERSPEKTIVNIH SLIKA

Modeli koji prikazuju različite faze morfogenetskog razvoja dobijeni su uklapanjem i izmenom pojedinačnih objekata primarnog 3D modela. Kao primarni model izabran je model postojećeg stanja, jer se o njemu mogu prikupiti najdetaljnije i najpouzdanije informacije.

Javni prostori su veliki kompleksi za koje je najčešće neophodno kombinovati oba navedena tipa fotogrametrije. Svaki od ovih tipova ograničen je time što pruža informacije samo o strukturama vidljivim na fotografijama. Da bi se kreirala potpuna 3D reprezentacija urbanog tkiva, neophodno je posedovati podatke o gabaritima objekata, fasadama i visinama. Korišćenje samo jednog tipa fotogrametrije nije bilo dovoljno za dobijanje svih neophodnih podataka.

Slika 173. Ortofoto snimak Trga slobode u Novom Sadu
Slika 174. Prikaz 3D modela gradske kuće (V. Stojaković).

Slika 175. Prikaz 3D modela crkve imena Marijinog (V. Stojaković)

Slika 176. Prikaz 3D modela Gvozdenog čoveka (V. Stojaković)

Slika 177. Prikaz 3D modela Tanurdžićeve palate (V. Stojaković)
Arhitektonski objekti teško mogu biti potpuno obuhvaćeni samo slikama sa zemlje ili samo slikama iz vazduha. Najbolje rezultate daje objedinjavanje ova dva pristupa. Struktura trgova je
pogodna za terestrijalnu fotogrametriju jer postoji prostran neizgrađen prostor ispred svake fasade, što je veoma pogodno za pravljenje kvalitetnog seta fotografija za modelovanje.

Delovi objekata koji uglavnom nisu vidljivi sa trga su krovovi i krovni detalji. Aero fotogrametrijskim snmcima centar grada Novog Sada je pokriven u razmeri 1:1000 (slika 173). Merenjem relativne visine venaca, slemena, streha i presečnica krovnih ravni, dobijeni su podaci čija varijacija je manja od 20cm. Ovi podaci upotpunjuju model dobijen iz fotografija slikanih sa zemlje.

U cilju postizanja što veće sličnosti sa realnim prostorom, teksture iz fotogrametrijskih snimaka su uvedene u model (slike 174 - 180).

4.4.3 GENERISANJE PROSTORA NA OSNOVU JEDNE PERSPEKTIVNE SLIKE

Virtuelna rekonstrukcija prethodnog stanja trga vršena je principom generisanja prostora na osnovu jedne fotografije. Objekti koji su srušeni ili značajno modifikovani, modelovani su pojedinačno, svaki na osnovu jedne pogodno izabrane fotografije. Fotografije su birane na osnovu sledećih kriterijuma:

- kvalitet fotografije,
- količina i pouzdanost relacija koje mogu da budu korišćene za orijentaciju fotografije,
- minimalna deformacija sočiva (ili deformacija koja može da bude prethodno ispravljena) i
- raspored objekata na slici, odnosno celovitost prikaza objekta koji se modeluje.

Na primer, za modelovanje istočne strane trga, pre probijanja ulice Modene (faza II) postoji nekoliko fotografija, ali one ili prikazuju mali broj objekata, i to uglavnom nepostojeće, što znači da nema dovoljno podataka za orijentaciju, ili su slikane širokougaonim objektivom, usled čega se javlja velika distorzija.

Rekonstrukcija objekata na osnovu jedne fotografije prikazana je na osnovu jednog reprezentativnog primera. Taj primer je generisanje modela apoteke koja je srušena polovinom 20 veka (objekat broj 7 na slici 171). Na odabranoj fotografiji (slika 181) prikazane su apoteka i Tanurdžićeva palata.

74 Dovoljno dobar za orijentaciju fotografije podrazumeva da geometrijski elementi uočeni na slici zadovoljavaju pravila perspektivnog projiciranja.
Slika 181. Fotografija na osnovu koje je modelovana apoteka.

Slika 182. Atributi uočeni na fotografiji.

Značajne karakteristike geometrije objekata prikazanih na slici su: front apoteke je simetričan, prozori i etaže na Tanurdžićevoj palati su u rasterskom rasporedu i može se uočiti puno paralelnih pravih i ravni fasadnih platna (slika 182). Pravac a je pravac horizontala fronta apoteke, pravac b je horizontalni pravac fasade Tanurdžićeve palate u ulici Modene, pravac c je horizontalni pravac fasade Tanurdžićeve palate u Zmaj Jovinoj ulici i pravac v je pravac vertikala. Dakle, karakteristični snopovi ravni su: α koji sadrži pravce a i $v\ (\alpha = N_aN_v)$; β koji sadrži pravce b i v.
(βₙ = NₙNᵥ); γ koji sadrži pravce c i v (γₙ = NᵥNᵥ) i snop horizontalnih ravnih χ koji sadrži pravce α, b i c (χₙ = NᵥNᵥ) (slika 183).

Na osnovu relacije da je pravac v upravan na ravan χ sledi da je centar perspektive na kružnici konstruisanoj na normalom iz nedogleda Nᵥ na nedoglednicu χₙ u ravni normalnoj na ravan slike. Ravan u kojoj se nalazi ta kružnica obeležena je sa π (πₙ ∈ [Nᵥ, πₙ - χₙ]). Na osnovu relacije poznatog oštrog ugla (88°) između pravaca b i c, sledi da je centar perspektive na preseku torusa (sa osom Nᵥ, Nᵥ) i kružnice (sa centrom Cₗ (πNᵥ, CₗNᵥ = 88° * 2 = 176°)).

Ravanska konstrukcija centra perspektive data je na slici 184. Oborenu projekciju centra perspektive (Pᵥ) oko nedoglednice χₙ dobijamo presecanjem kružnice koja odreduje torus i ortogonalne projekcije ravnih π na ravan slike (koja se poklapa sa nedoglednicom πₙ). U toj oborenjoj projekciji rastojanje centra perspektive od nedoglednice χₙ se vidi u pravoj veličini. Takođe se svi uglovi između horizontalnih pravih vide u pravoj veličini, pa se može naći položaj apoteke, odnosno ugao fasade apoteke u odnosu na fasadu Tanurdžićeve palate (πNᵥPᵥNᵥ = 6°). Korišćenjem činjenice da se to rastojanje vidi i u ravan π konstruisana je oborena projekcija centra perspektive (Pᵥ) oko nedoglednice πₙ.

Na ovaj način orijentisana je fotografija, odnosno određen je položaj centra perspektive u odnosu na sliku. Sledeća faza je 3D modelovanje.

za terestrijalnu fotogrametriju uz prethodnu detekciju karakterističnih elemenata slike koji su uvedeni u model.

Svi nepostojeći i modifikovani objekti modelovani su na sličan način. Naknadnom integracijom u model postojećeg stanja trga kreirani su celokupni izgledi svih faza razvoja ovog urbanog fragmenta.

Slika 185. Proces modelovanja apoteke.

Slika 186. Model apoteke, u ravni fotografije.

Slika 187. Model apoteke, fasada.
4.4.4 Virtuelna morfogenetska rekonstrukcija trga Slobode u Novom Sadu

Digitalna rekonstrukcija morfogeneze prostorne strukture predstavlja spajanje segmentnih pristupa formiranja finalnog rezultata.

Slika 188 prikazuje volumetrijsku rekonstrukciju trga na osnovu Kaltšmitovog (Caltschmidt) plana iz 1775. godine, crteža i tekstualnih opisa. Trg je tada još imao amorfan oblik, ruralnog karaktera sa nepovezanom strukturuom fasadnog platna (Tepavčević 2008). Detaljne virtualne rekonstrukcije kreirane su za period od 1885. godine do danas (slike 189 - 191). Na slici 192 prikazane su panoramske projekcije sve četiri opisane faze razvoja u kojima je trg potpuno rekonstruisan. Rekonstrukcije su kreirane na osnovu urbanističke pologe, istorijskih fotografija, fotografija postojećeg stanja i aero snimaka.

Morfogenetska analiza predstavljena je u formi 3D modela, što omogućava visoku fleksibilnost i primenu raznovrsnih sekundarnih aplikacija. Virtuelna morfogenetska rekonstrukcija omogućava praćenje promene forme u toku vremena. Za karakteristične vremenske periode moguće je automatski rekonstruisati sliku trga u proizvoljnoj centralnoj ili ortogonalnoj projekciji, VR (virtual reality) sceni ili simulirati kretanje trgom ili biti uvedeni u softver kojim se omogućava interakcija sa digitalnim okruženjem.

Digitalne rekonstrukcije takođe su kreirane na osnovu usaglašavanja različitih metoda i tehnoloških mogućnosti. Time je ostvaren doprinos u analizi složenih sistema u formiranju
objedinjavanja ulaznih podataka dobijenih iz postojeće dokumentacije u formu niza 3D modela kao izlaznih podataka.

Virtuelni trodimenzionalni modeli trga u različitim vremenskim periodima predstavljaju pogodnu osnovu i za dalja istraživanja koja su u vezi sa prikazanim prostorom (Tepavčević i Stojaković 2009).

Slika 189. Perspektivni prikaz prve razvojne faze trga, kraj 19. veka.

Slika 190. Perspektivni prikaz trga oko 1920. godine.
Slika 191. Perspektivni prikaz trga oko 1940. godine.

Slika 192. Panoramske projekcije morfogenetske rekonstrukcije trga.
4.5 MOGUĆNOSTI UPOTREBE MODELA

Prikazani primeri su odabrani kao reprezentativni predstavnici složenih problema u oblasti virtuelnih rekonstrukcija i vizuelizacije graditeljskog nasleđa. Dobijeni izlazi podaci su 3D modeli. Njihova dalja upotreba je veoma raznovrsna. Domen korišćenja ovakvih modela svakodnevno se razvija i nadograđuje.

Analagija 3D modela i realnog prostornog okruženja je visoka. Čuvanje prostornih reprezentacija realnog ili imaginarnog prostora u formi trodimenzionalnog digitalnog modela je praktično i ima široku primenu. Osim toga, 3D modeli su izrazito fleksibilni, i na osnovu digitalnog modela mogu se kreirati druge vrste dvodimenzionalnih slika (ortogonalni ili perspektivni pogledi, panoramske projekcije, tehnički ili realističan prikaz, animacije, interaktivne aplikacije i drugo), stereokopske slike (hologrami, stereogrami, anaglifi) i trodimenzionalne reprezentacije (makete, laserske 3D projekcije, holo projekcije, VR i drugo). Upotreba 3D modela graditeljskog nasleđa je veoma široka, a najčešće se koristi za:

- edukaciju,
- uspostavljanje analogija između objekata,
- obnovu objekata,
- simulaciju uticaja i drugo.

Edukacija podrazumeva prikaz prostora koji korisniku nije dostupan. Digitalni 3D model se lako distribuira, i lako se povezuje sa metapodacima koji omogućuju adekvatnu pretragu i sortiranje (De Niet 2010). Interaktivni pristup omogućava korisniku proizvoljnu izmenu očne tačke i načina posmatranja. Interaktivna prostorna okruženja (Roussou i Drettakis 2003), virtualna realnost (virtual reality), augmented reality, kao pozadinu koriste digitalne 3D modele. Web aplikacije, virtualni muzeji, e-learning sistemi efikasno prenose informacije o prostoru udaljenim korisnicima (Bastanlar, i drugi 2008; Koutsoudis, Arnaoutoglou i Chamzas 2006; Styliadis 2007).

Kreiranje analogije među objektima odnosi se na uspostavljanje veza među karakteristikama određenih objekata i/ili tipova (Masuch i drugi 1999). Na osnovu takvih analiza učuvaju se tendencije građenja i razvoj ideja (Kurtović-Folić i Stojaković 2009). Korišćenjem statističkih analiza formiraju se prosečne vrednosti i izdvajaju se jaki i slabi tipološki elementi, što je veoma značajno za izučavanje razvoja arhitekture (Stojaković i Šidarin 2008).

3D modeli bitno olakšavaju obnovu objekata na više načina. Kada se vrši anastiloza ili restauracija, fleksibilan prikaz originalnog izgleda spomenika je neophodan. U slučaju rekonstrukcija, 3D model može da doprinese kvalitetnijoj studiji predloženih rešenja.

Osim analize izgleda objekta, na 3D modelima se mogu vršiti ispitivanja u kojima se simulira određeni spoljni uticaj, bez bojazni da dođe do oštećenja objekta. 3D modeli su podloga za virtualno ispitivanje ponašanja strukture pod određenim uslovima, što ima značajnu ulogu u građevini, urbanističkom i arhitektonskom planiranju, proračunu faktora rizika i drugom. Rezultati obrade

75 Makete kreirane 3D ploterima lako se generišu na osnovu digitalnog 3D modela.
76 Anastiloza je vraćanje delova objekta na njihovo originalno mesto (Nenadović 1980).
77 Restauracija je vraćanje originalnog izgleda objekta (Nenadović 1980).
Podataka mogu biti vezani za otpornost objekta na opterećenja ili sile kao što su vetar, seizmika i drugo.
5 ZAVRŠNE NAPOMENE

5.1 REZULTATI

U ovom radu kreiran je nov normativni poluautomatski sistem za generisanje prostora na osnovu perspektivnih slika. Rezultati istraživanja se odnose na unapređenje kvaliteta sistema za generisanje prostora na osnovu perspektivnih slika sa različitih aspekata. U odnosu na postojeće pristupe ovoj tematici mogu se uočiti sledeća poboljšanja:

- Bolja prilagođenost sistema oblasti graditeljskog nasleđa.
 - Uzet je u obzir način rada prosečnog korisnika iz oblasti graditeljskog nasleđa.
 - Nov način uvođenja, izbora i obrade elemenata i relacija u skladu sa potrebama graditeljskog nasleđa.
- Bolja prilagođenost korisniku.
 - Data je adekvatna uloga korisniku čije su odluke neophodne za funkcionisanje poluautomatskih sistema. Razmotreni su najčešći problemi koji nastaju u segmentima koje obrađuje korisnik. Na osnovu tih nedostataka uvedena su odgovarajuća poboljšanja.
 - Uvedena je vizualizacija procesa u kojima je bitno razumevanje korisnika. Taj dodatak poboljšava izbor relacija i atributa koje korisnik uvodi, a od kojih bitno zavisi pouzdanost orijentacije i modelovanja.
 - Korišćeni su elementi perspektivne slike koji odgovaraju prirodnoj percepciji.
- Bitno unapređenje pristupa restituciji.
 - Predloženim sistemom relacija za orijentaciju slike postignuto je da veći postotak istorijskih fotografija građene sredine može da bude obrađen korišćenjem ovog sistema.
 - Uvedena automatska kontrola neodređenosti jedne perspektivne projekcije korišćenjem stepena slobode povećava kvalitet izlaznih modela i olakšava modelovanje.
- Sveobuhvatnost pristupa generisanju prostora na osnovu slika.
 - Objedinjavanjem modelovanja na osnovu jedne i više slika, sistem je prilagođen potrebama digitalnih rekonstrukcija složenih kompleksa graditeljskog nasleđa. Na ovaj način smanjena je mogućnost pojave greške koja se pojavljuje pri korišćenju nesinhronizovanih postupaka.
 - Sistem je potpun i konzistentan.

U sistem je objedinjen učinak ljudskog i veštačkog vida. Analizijama sa konceptom ljudskog vida sistem se logički približava korisniku, što je veoma značajno jer korisnik ima presudnu ulogu u pouzdanosti modela kreiranih u poluautomatskim sistemima. Prednosti digitalnog procesiranja, slično veštačkom vidu, povećavaju stepen automatizacije i premošćuju delove sistema koji usled visoke kompleksnosti ne mogu biti drugačije obrađeni. Korišćenjem prednosti oba navedena tipa
interpretacije prostora sistem je organizovan iz niza komponenti koje unosi korisnik ili generiše računar.

Nov način uvođenja, izbora i obrade elemenata i relacija odgovara upotrebi u oblasti graditeljskog nasleđa, što je detaljno pokazano u navedenim primjerima. Atributi koji određuju elemente izabrani su na osnovu osobina perspektivnog projiciranja. Time je sistem konceptualno prilagođen korišćenju fotografija kao ulaznih podataka, što poboljšava sveobuhvatnost generisanja realnog prostora.

Proces generisanja prostora na osnovu slika u prikazanom sistemu zasnovan je na adekvatnom kombinovanju različitih metoda i tehničkih postupaka. U skladu sa tipom i količinom ulaznih podataka bira se putanja koja definiše proces generisanja 3D modela prostorne strukture.

Izdvojena su dva osnovna procesa, proces orijentacije i proces modelovanja. Uveden je nov način interpretacije ovih procesa kojim se olakšava razumevanje korisnika korišćenjem 3D vizuelizacije. Time je povećan kvalitet uloge korisnika i ograničena je mogućnost pogrešnog, dvosmislenog i nedovoljnog tumačenja prostornih odnosa.

Interpretacija sistema upotrebljen strukturalnih i funkcionalnih veza između komponenata i segmenta je obezbedila potpunost i konzistentnost. Hijerarhijska podelila elemenata, atributa i relacija je prikazana strukturalnim povezivanjem. Uticaj jedne komponente ili segmenta na druge delove sistema označen je funkcionalnim vezama različitog intenziteta, odnosno stepena određenosti. Postignuta konzistentnost sistema omogućava da se na osnovu malog broja komponenti i međusobnih veza ostvari celokupan proces koji polazi od 2D slike i oblikuje 3D prostornu strukturu. Radi ilustracije praktičnog značaja, prikazani su problemi vizualizacije prostornih struktura iz oblasti graditeljskog nasleđa koji su rešeni upotrebom opisanog sistema.

5.2 DISKUSIJA

5.2.1 ZNAČAJ POSTIGNUTIH REZULTATA

Sistem je namenjen ekonomičnom snimanju i vizuelnoj rekonstrukciji velikog broja objekata graditeljskog nasleđa. Zbog toga je izabrano generisanje prostora na osnovu slika i pretpostavljeno je da su sve fotografije snimane amaterskim foto aparatima. Za snimanje velikog broja objekata najbolje je koristiti običan foto aparat (Shashi i Jain 2007a). Fotografije su veoma dostupne, masovno se kreiraju i dovoljno su precizne.

Sistemska snimanje objekata se ne vrši, što je veoma kritično, naročito u siromašnim zemljama i zemljama zahvaćenim krizama i ratnim stanjima, gde spomenici ubrzano propadaju (Waldhäusl 1992; Boehler i Heinz 1999; Yilmaz, Yakar, Gulec i drugi 2007).

U ovom radu realan arhitektonski prostor transformiran je u geometrijski, da bi postupci obrade podataka bili u skladu sa potencijalnom implementacijom sistema. Transformacija arhitektonskog u dekartoški prostor izvršena je apstrakcijom prostora osnovnim geometrijskim elementima. Interpretacija tih elementa je prilagođena svojstvima perspektivnog projiciranja, što je veoma važno za uspostavljanje pravilne veze između 2D slike i 3D prostora. Elementi su određeni atributima koji su u skladu sa specifičnostima veze prostorne i perspektivne projekcije elementa.

Izbor elemenata, njihovi međusobni odnosi, relacije koje određuju međusobne uticaje uvedeni i obrađeni nešto drugačije nego u postojećim pristupima. Neki postojeći sistemi koriste pravila perspektivnog projiciranja, ali se to svodi delimičnu upotrebu projekcija ili nedogleda. Primena beskonačno dalekih atributa kao polazišta za implementaciju retko je zastupljena u postojećim sistemima. Prednost upotrebe perspektivnog projiciranja je približavanje sistema pravilima na kojima je zasnovano urođeno shvatanje prostora.

Sistem za generisanje prostora na osnovu slika u ovom istraživanju, osmišljen je na drugačiji način nego što je uobičajeno. Cilj takve interpretacije je povećanje upotrebljive vrednosti u oblasti arhitekture, a posebno graditeljskog nasleđa.

Sistem je poluautomatski i prilagođen je korisniku. Uloga korisnika je veoma bitna jer on:

- kreira ili bira fotografije koje će biti korišćene,
- vrši odabir elemenata i relacija na osnovu kojih se vrši orijentacija i
- unosi pouzdane elemente koji su polazište za kreiranje 3D modela.

Zbog toga je posebna pažnja u ovom istraživanju posvećena odnosu sistema i korisnika. Jednostavnost i konsistentnost sistema i vizuelna interpretacija procesa orijentacije i modelovanja omogućuju korisniku da razume sistem i postupke koji se odvijaju automatski.

Softver za generisanje prostora na osnovu više fotografija (Autodesk ImageModeler 2011) (PhotoModeler 2011) bolje je prilagođen potrebama korisnika (Ablan 2007) od softvera za generisanje prostora na osnovu jedne fotografije. U fotografimetrijskim aplikacijama kalibracija i orijentacija se jednostavno procesiraju, a zbog većeg broja eksplicitnih prostornih odnosa, korisničke greške su mnogo red., i potpuno razumevanje sistema nije neophodno.

U ovom radu, bitno poboljšanje u poređenju sa postojećim sistemima izvršeno je u segmentu generisanja prostora na osnovu jedne fotografije, odnosno u pristupu restituciji. Umanjena je verovatnoća uvođenja loše procenjenih ili netačnih pretpostavki i pogrešnog tumačenja prostornih odnosa. U cilju smanjenja korisničkih grešaka u ovom istraživanju uvedena je:

- vizuelna interpretacija uticaja pri orijentaciji i
- nov način ograničenja u procesu modelovanja.
U usmeravanju uloge korisnika bitno je njegovo razumevanje samog procesa. Kod postojećih aplikacija za generisanje prostora na osnovu jedne слиke, proces orijentacije, osim što ima veoma ograničene mogućnosti, ne nudi nikakve povratne informacije na osnovu kojih bi korisnik mogao da shvati kako element koji on uvodi utiče na položaj centra perspektive. Proces orijentacije jedne слике je kompleksan i pouzdanost modela bitno zavisí od kvaliteta orijentacije. Razumevanje postupka je važno, a postojeći numerički i analitički modeli ne prikazuju suštinsku procesa.

Korišćenje geometrijske interpretacije i vizuelnih prikaza međusobnog uticaja komponenti sistema, koja je uvedena u ovom istraživanju, usmerava, olakšava i poboljšava ulogu korisnika u sistemu. Vizualna interpretacija procesa ima za cilj da korisniku omogući jasnije shvatanje uticaja uvedenih komponenti, atributa i relacija u procesu orijentacije. Na osnovu toga, korisniku je omogućeno da pravilno odabere najbolje fotografije za modelovanje, i da na njima označi dovoljno ulaznih parametara za kvalitetno lociranje centra perspektive.

Postojeći sistemi su zasnovani na numeričkim i analitičkim postupcima. Geometrijski interpretiran sistem je u poređenju sa njima mnogo pristupačniji i razumljiviji. Svrha dodavanja geometrijske i vizuelne interpretacije je da uputi korisnika u postupak koji se odvija automatski u toku orijentacije jedne fotografije.

Postojeće aplikacije za modelovanje na osnovu jedne fotografije ne uključuju ograničenja u toku procesa, već se oslanjaju na korisnikovo poznavanje geometrije i dvosmisljenosti izolovane perspektivne projekcije. Veoma mali broj korisnika je u potpunosti svestan ovih višeznacnosti. Zbog toga u modelovanju nastaju veoma grube greške i mnogi modeli su zbog toga nepouzdana i neupotrebivii za profesionalne potrebe.

U ovom radu u procesu modelovanja uvedeno je ograničavanje položaja elementa koje korisnik postavlja u prostor. Taj metod bi značajno umanjio broj krupnih grešaka u modelima koje na osnovu istorijskih fotografija kreiraju prosečni korisnici. Svrha uvedenih ograničenja je da pravilno usmere korisnika i onemogući sve neeksplicitne zaključke o prostoru.

Postojeći postupci uvek odvojeno procesiraju generisanje prostora na osnovu jedne ili na osnovu više слика. Kompleksni problemi se stoga ne mogu simultano rešavati u okviru istog sistema. Ne postoji aplikacija koja sadrži alate za orijentaciju fotografije za oba pristupa u istom koordinatnom sistemu. U ovom istraživanju generisanje prostora na osnovu jedne ili više fotografija obuhvaćeno je u istom sistemu, odnosno predložena je mogućnost simultanog korišćenja restituicije i fotogrametrije.
Sistem za generisanje prostora na osnovu slika sastoji se od komponenata i veza među njima. Prilagođavanje hijerarhije komponenata u skladu sa uobičajim osobinama forme istorijskog arhitektonskog okruženja bitno je za kvalitetno korišćenje sistema u toj i sličnim oblastima (Schouteden i drugi 2001).

5.2.2 PREPORUKE ZA PRAKTIČNU UPOTREBU

Preporuke za praktičnu upotrebu prikazane su ograničenjima ovog sistema i sugestijama za dalja istraživanja. Ograničenja svakog istraživanja mogu se podeliti u ona koja je moguće premostiti budućim usavršavanjem i ona koja će biti prisutna bez obzira na dalji razvoj.

Neka ograničenja ovakvih sistema nije moguće premostiti. Ona su slična kod svih savremenih sistema za generisanje prostora na osnovu slika i svode se na:
- ograničen kvalitet, veličinu i broj fotografija,
- zaklonjenost objekata na slici,
- nepouzdanost ili nedovoljne pretpostavke o prostornim odnosima i
- ograničenja alata za modelovanje.

Ograničenja sistema i smernice za dalja istraživanja i unapređenje prikazanog sistema, razvrstane su u nekoliko osnovnih pravaca u skladu sa tendencijama razvoja savremenih sistema za generisanje prostora na osnovu slika. Ograničenja koja daljom nadogradnjom mogu da budu prevaziđena su vezana za:
- raznovrsnost i složenost korišćenih elemenata i relacija,
- razliku perspektivne slike i fotografije i
- stepen automatizacije.

Uprošćavanje korišćenih elemenata i relacija nastalo je u transformaciji realnog arhitektonskog u dekarto夫ski prostor. Komponente sistema su ograničene na elemente i relacije koje su najčešće zastupljene u istorijskom kontekstu građene sredine. Elementi sistema ograničeni su samo na najprostije geometrijske entitete, kao što su tačka, prava i ravan, a relacije na odnose tih elemenata. Neki drugi elementi, kao što su krive i kompleksne površi nisu obuhvaćene ovim istraživanjem, iako postoje u građenoj sredini (S. El-Hakim 2000).

Da bi se pokazao značaj uvođenja ograničenja u proces 3D modelovanja na osnovu jedne fotografije analizirani su samo odnosi osnovnih geometrijskih elemenata, iako svi postojeći softveri za modelovanje sadrže daleko veće mogućnosti. Isključivim korišćenjem komponenti ovog sistema mogu se detektovati samo osnovni geometrijski elementi prostorne strukture. Kada je jednom određen tačan ‘kostur’ modela sačinjen od osnovnih elemenata, korišćenjem bilo koje aplikacije mogu se modelovati složenije strukture (Kwiatek i Wesolowski 2009; Fischer 2003). Na taj način, modelovanjem osnovne geometrijske strukture (kostura) uz pomoć ograničenja i naknadnim usložnjavanjem korišćenjem uobičajenih alata, modelovanje je lišeno direktnih veza složenih elemenata i fotografije. To znači da korisnik ne mora da uspostavlja odnos složenih 3D forma i njihovih projekcija.

Uprošćenje elemenata i relacija uvedeno je da bi prikaz saštine bio konzistentan. Ukoliko prethodno opisani pristup modelovanju složenih struktura ne zadovoljava potrebe korisnika, sistem je moguće dalje razraditi uvođenjem novih elemenata i relacija. Sistem je osmišljen kao jezgro koje može da bude lako nadograđeno adekvatnim usložnjavanjem ukoliko za to postoji potreba.
Fotografije, koje su ulazni podaci, tretirane su kao perspektivne slike, odnosno pinhole model. Realne fotografije nisu tačne perspektivne slike prostora, već uključuju niz deformacija koje zavise od tehničkih karakteristika foto aparata.

Bez obzira na tip foto aparata postoje metodi za ispravljanje deformacija fotografija i u oblasti restitucije (Keren, Shimshoni i Tal 2002) i u oblasti fotografametrije (Fryer i Brown 1986). Distorzije foto aparata poznatih performansi se veoma efikasno ispravljaju prilagođenim aplikacijama (Ojanen 1999). Te metode se direktno mogu ugraditi u prikazani sistem, što bi povećalo preciznost do nivoa svih ostalih sličnih sistema.

Potreba za što većim stepenom automatizacije je prisutna u evoluciji većine primjenjenih nauka. Ovaj sistem ima visok upotrebljen potencijal samo ako bi bio implementiran, to jest ako bi predviđeni segmenti koje generiše računar bili automatizovani. Idejno je koncipiran tako da se lako može unaprediti i obogatiti većim brojem automatskih procesa.

Sistem je prikazan samo teorijski, a njegova primena ilustrovana je korišćenjem različitih sličnih aplikacija i geometrijskih konstrukcija. Nije programirana aplikacija koja odgovara ovom sistemu. Najveći potencijal prikazanog sistema je upravo u mogućnosti implementacije. Postizanjem zadatog stepena automatizacije ovaj sistem za generisanje prostora na osnovu perspektivnih slika bio bi upotpunjen i imao bi još veći praktičan značaj za vizualizaciju graditeljskog nasleda.

5.3 ZAKLJUČAK

Osmišljeni sistem za generisanje prostora na osnovu perspektivnih slika prilagođen je upotrebi u oblasti vizualizacije graditeljskog nasleda. Ovakav sistemski pristup pogodan je za efikasno kreiranje trodimenzionalnih virtualnih modela realnih arhitektonskih struktura. Težište istraživanja je na ispravljanju nedostataka koji su uočeni u toku rada na vizualizaciji objekata i kompleksa graditeljskog nasleda. U predloženom sistemu posebna pažnja posvećena je ulozi korisnika. Time je ostvaren pomak u odnosu na uobičajene pristupe kojima je primarni cilj povećanje preciznosti automatskog procesiranja.

Način korišćenja elemenata i relacija u ovom istraživanju izabran je da se optimalno uklopi u tumačenje fotografija graditeljskog nasleda. Na taj način kreirana je interpretacija arhitektonskog prostora matematičkim modelom koja pogoduje i geometrijskom i perceptivnom tumačenju slike i prostora. Elementi su prikazani atributima koji su karakteristični za perspektivno projiciranje 3D prostora u 2D sliku.

Dodatak u vidu vizualizacije procesa u kojima je odluka korisnika diktira verodostojnost modela, olakšava shvatanje postupka i pravilno odlučivanje. Predloženo je da aplikacija treba da sadrži vizuelni prikaz utičaja svake uvedene relacije na geometrijsko mesto centara perspektive.
Pristup vizualizaciji u odnosu na geometrijske atribute koji se nalaze u ravni slike osmišljen je i prikazan u ovom radu.

Mnogo više tipova fotografija (naročito pri restituciji istorijskih fotografija) može da bude obrađeno korišćenjem ovog sistema zahvaljujući objedinjavanju svih kombinacija uvedenih relacija i njihovom simultanom upotreboom pri orijentaciji.

U ovom istraživanju, uvođenjem ograničenja u proces modelovanja, prevaziđena je višesmislenost jedne perspektivne slike. Onemogućeno je proizvoljno modelovanje i nagađanje, koje često dovodi do velikih nedoslednosti u virtualnim modelima. Pristup modelovanju koji se uobičajeno koristi u postojećim aplikacijama za modelovanje na osnovu jedne fotografije nije prilagođen logici restitucije, jer neodređenost jedne projekcije nije uzeta u obzir.

Koncepcija ovog sistema bazirana je na objedinjavanju različitih procedura za generisanje prostora na osnovu slika (restitucije i fotogrametrije) u jedinstven sistem. Logičko objedinjavanje korišćenjem istih komponenti sistema i istih tipova njihovih međusobnih veza u segmentu restitucije kao i u segmentu fotogrametrije ostvarilo je pogodnu podlogu za izradu kompleksnih projekata vizualizacije graditeljskog nasleđa.

Nabrojane razlike ovog i drugih postojećih sistema za generisanje prostora na osnovu perspektivnih slika čine ovaj sistem adekvatnim za efikasno snimanje i reprezentaciju arhitektonskih kompleksa.

Upotreba sistemskog pristupa vizuelizacije prostora na osnovu fotografija je veoma primenljiva u oblasti graditeljskog nasleđa. Virtuelna 3D rekonstrukcija je najbolji vid obnove izgubljenih prostornih podataka. Generisanje virtualnih modela na osnovu fotografija je pristupačno i ekonomično.

Veliki broj objekata svakodnevno nestaje, a da njihovo postojanje nikad ne bude zabeleženo. Mnogi imaju veliku kulturološku vrednost koja nije uočena za vreme trajanja objekta. Čuvanjem i obnavljanjem fonda graditeljskog nasleđa, makar i u virtualnim prostorima, povećava se ukupno znanje i formira se bogat fundament za dalja istraživanja.
6 Bibliografija

Doyle, Fred. 1964. „The Historical Development of Analytical Photogrammetry.“ *Photogrammetric Engineering*** XXX, br. 2: 259-256.

Figure Ground Perception. 2010. http://buyturquoise.info/Figure-Ground-Perception-more.html (poslednji pristup 01 10, 2011).

Kodak. www.kodak.com (poslednji pristup 01 01, 2011).

Kurtović-Folić, Nađa. 2011. „Istorijski javni prostori i njihova sudbina u strategiji održivog razvoja gradova.“ *Unapređenje strategije obnove i korišćenja javnih prostora u prostornom i urbanističkom planiranju i projektovanju*: 3-32.

Kwon, Yong-Moo, Ig-Jae Kim, Sang Chul Ahn, Heedong Ko i Hyoung-Gon Kim. 2001. „Virtual heritage system: modeling, database & presentation.“ *Proceedings of Seventh International Conference on Virtual Systems and Multimedia*, Berkeley, 137-146.

Lindberg, David C. *Theories of Vision from Al-kindī to Kepler*. USA: University of Chicago,

Master Thesis, Hamburg: Univeristy of Hamburg,

Ordonez, Celestino, Pedro Arias, Jose Herraez, Jaime Rodriguez i Maria Martin. 2008. „A combined single range and single image Device for low-cost measurement of building Facade features.” The Photogrammetric Record 23, br. 122: 228-240.

Stavrianos, Bertha. 1945. „The relation of shape perception to explicit judgments of inclination.“ Archives of Psychology 296: 1-94.

Stojaković, Vesna. 2009. „Virtuelne trodimenzionalne reprezentacije arhitektonskih objekata kreirane na osnovu perspektivnih slika.“ Nauka i praksa 12, br. 1: 208-211.
Stojaković, Vesna i Bojan Tepavčević. 2011a. „Generisanje i primena dinamičkih virtualnih rekonstrukcija javnih gradskih prostora.“ Unapređenje startegije obnove i korišćenja javnih prostora u prostornom i urbanističkom planiranju i projektovanju: 69-86.

Svećnjak, Z. 1975. Geografski prikaz Banoštora. diplomski rad, Novi Sad: PMF.

Štulić, Radovan. 2006. Perspektiva. Novi Sad: FTN.

Tepavčević, Bojan. 2010. Uticaj geometrijske reprezentacije prostora na savremenu arhitekturu. doktorska disertacija, Novi Sad: FTN.

Thouless, Robert. 1934. „The general principle underlying effects attributed to the so-called phenomenal constancy tendency.” *Psychologische Forschung* 19: 300–310.

7 ILUSTRACIJE

7.1 POPIS ILUSTRACIJA

Slika 1. Princip izolovanja lika – pokazuje značaj izolovanja lika, preuzeto iz *Figure Ground Perception*, 2010. .. 13

Slika 5. Hijerarhijska organizacija delova (Marr 1982). .. 17

Slika 7. Primer slike na kojoj čovek može da odredi prostorne odnose a računar ne može. Džejms (R.C. James), preuzeto od Marr, 1982.. 18

Slika 8. Konstrukcija perspektivne slike, Dibrez (Dubreuil) 1642. godina, preuzeto od Andersen, 2007. 20

Slika 10. Delovi fresaka iz Pompeje sa nedoslednom upotrebom linearnih perspektiva, preuzeto od Wiersma 2008. .. 21

Slika 11. Torre aquila, Trento, ‘April’ , kraj 14 veka (Castelnuovo, 2002). Plemići su veći od radnika, bez obzira na udaljenost od posmatrača. .. 22

Slika 12. Ostupanje od jedinstvenog nedogleda.. 23

Slika 17. Pantograf, sredstvo za crtanje perspektive (Andersen 2007). ... 25

Slika 19. Analiza verodostojnosti perspektičnog razmeravanja na slici Bitka za San Romano, Ucello, (Paolo Ucello), 1438 – 1440. godina (Sols 1994). ... 26

Slika 20. Mazačova slika Svetog Trojstva na oltaru crkve Santa Maria Novela u Firenci... 27

Slika 22.De Frizova sika iz 1605. godine i njena ispravka iz 1615. godine ... 29
Slika 25. Lojpolova mašina za kreiranje anamorfoza, 1713. godina (Andersen 2007). 30
Slika 27. Lamber, perspektograf (preuzeto sa http://www.pointprojects.com/ 03.2011.)................................. 32
Slika 28. Monž, duž AB u prostoru sa zrcacima projiciranja na ravan MNLO (levo), pogled zdesna i pogled od gore, projekcije duži i prava veličina (desno), preuzeto od Monge, 1922. .. 32
Slika 29. Camera obscura (Bellis 1997) .. 34
Slika 30. Prva fotografija ‘Point de vue du Gras, Saint Lous de Vorences’, Nisefor, 1827. godina (Legget 1997) 34
Slika 32. “You Press the Button, We Do the Rest” (Kodak n.d.) ... 35
Slika 33. Vidni ugao kod različitih tipova objektiva (Cook 1989) .. 36
Slika 34. Sistem sočiva (preuzeto sa http://www.cambridgeincolour.com/tutorials/camera-lenses.htm)......... 36
Slika 35. Deformisani pikseli, skew (Morvan 2009). ... 37
Slika 39. Rad slikara Fon Štinejka (Hendrick van Steenwijck), 17. vek. .. 41
Slika 41. Analiza Piranezijeve slike Ponte Fabrizio 1765. godina (Rapp 2008). ... 42
Slika 42. Slika kreirana korišćenjem više centara perspektive da bi se postigao prirodniji prikaz i unamjila deformaciju kupole (Ingmar 2008). .. 43
Slika 43. Prorov takiometro, preuzeto sa http://www.zeiss.co, 03.2011. ... 44
Slika 44. Prorov fotogoniometro, preuzeto sa http://www.lombardiabeniculturali.it, 03.2011. 44
Slika 45. Nadar. ... 45
Slika 46. Majdenbajrov plan fogrametrijskog snimanja objekta, preuzeto od Burtch, 2008. 46
Slika 47. Devil, preuzeto od Burtch, 2008. ... 47
Slika 48. Orel, autosterograf, preuzeto od Burtch, 2008. .. 47
Slika 49. Hagerzhofof instrument, preuzeto od Burtch, 2008. ... 48
Slika 50. Najstariji poznat primer interaktivne grafike, Parker i Volis, 1948. godina, preuzeto od Blundell, 2008. ... 49
Slika 51. Sketchpad u upotrebi, 1961. godina, preuzeto od Müller 2002 .. 49
Slika 54. Direktno merenje deformacija zida korišćenjem metra i viska, preuzeto od Sikka, 2007. 52
Slika 55. Korišćenje totalne stanice, preuzeto od Chikwanda, 2007. ... 52
Slika 56. Terestrijalna fotogrametrija, model crkve svete Ane u Bačkom Novom Selu (Vesna Stojaković). 52
Slika 57. Lasersko skeniranje, oblak tačaka (Courtesy Center for Design Visualization, UC Berkeley, preuzeto od Addison, 2007. ... 53
Slika 60. Modelovanje korišćenjem krivih, preuzeto iz tutorijala na stranici http://userpages.umbc.edu 02.2011. .. 54
Slika 62. Modelovanje na osnovu fotografije iz Mejdenbajerovog arhiva (Heuvel 2001) 58
Slika 63. Aero fotogrametrija, plan snimanja (V. Stojaković 2006) ... 59
Slika 64. Digitalni model terena kreiran korišćenjem aero fotogrametrije (segment Fruške Gore, projekat Centra za geoinformacione tehnologije i sisteme, FTN, Novi Sad) ... 59
Slika 65. Naknadna kalibracija u procesu terestrijalne fotogrametrije (V. Stojaković)............................. 60
Slika 66. Model crkve Srca Isusovog u Apatinu, kreiran korišćenjem terestrijalne fotogrametrije (V. Stojaković). .. 61
Slika 67. Položaj slika, slučaj 1. .. 62
Slika 68. Položaj slika, slučaj 2. .. 62
Slika 69. Položaj slika, slučaj 3. .. 62
Slika 70. Položaj slika, slučaj 4. .. 62
Slika 71. Automatsko modelovanje, na osnovu oblaka tačaka (Cornelius, i drugi 2004). 65
Slika 72. Automatsko modelovanje, na osnovu relacija (Werner i Zisserman 2002) 66
Slika 73. Delimično učešće korisnika (Lee i Nevatia 2003) ... 66
Slika 74. Modelovanje bez upotrebe automatizacije (Shashi i Jain 2007). .. 66
Slika 75. Uvođenje tekstura sa slika (De Luca 2006) ... 67
Slika 76. Reprezentacija 3D modela ... 68
Slika 77. Shematski prikaz relacija. ... 79
Slika 78. Konstrukcija nedogleda na osnovu slike dve jednake duži na istoj pravoj. 82
Slika 79. Translacija slike duž prave poznatog nedogleda ... 83
Slika 80. Dve prave pod pravim uglom. Prikaz konstrukcije geometrijskog mesta centra perspektive. 85
Slika 81. Dve prave pod pravim uglom. Geometrijsko mesto centara perspektive 86
Slika 82. Specijalan slučaj dve prave pod pravim uglom, prava a je paralelna sa ravni slike. Prikaz konstrukcije geometrijskog mesta centra perspektive. ... 86
Slika 83. Specijalan slučaj dve prave pod pravim uglom, prava a je paralelna sa ravni slike. Geometrijsko mesto centara perspektive. ... 86
Slika 84. Dve prave pod uglom φ. Prikaz konstrukcije geometrijskog mesta centra perspektive. 87
Slika 85. Dve prave pod uglom φ. Geometrijsko mesto centara perspektive .. 87
Slika 86. Specijalan slučaj dve prave pod uglom φ, prava a je paralelna sa ravni slike. Prikaz konstrukcije geometrijskog mesta centra perspektive. 88
Slika 87. Specijalan slučaj dve prave pod uglom φ, prava a je paralelna sa ravni slike. Geometrijsko mesto centara perspektive. ... 88
Slika 88. Prava i ravan pod pravim uglom. Prikaz konstrukcije geometrijskog mesta centra perspektive......... 89
Slika 89. Prava i ravan pod pravim uglom. Geometrijsko mesto centara perspektive. 89
Slika 90. Specijalan slučaj prave i ravni pod pravim uglom, ravan α je paralelna sa ravni slike. 90
Slika 91. Specijalan slučaj prave i ravni pod pravim uglom, prava a je paralelna sa ravni slike.......................... 90
Slika 92. Prava i ravan pod uglom φ. Prikaz konstrukcije geometrijskog mesta centra perspektive............... 91
Slika 93. Prava i ravan pod uglom φ. Geometrijsko mesto centara perspektive. Perspektivni prikaz modela..... 91
Slika 94. Prava i ravan pod uglom φ. Geometrijsko mesto centara perspektive. .. 91
Slika 95. Specijalan slučaj prave i ravni pod uglom φ, ravan α je paralelna sa ravni slike. 92
Slika 96. Specijalan slučaj prave i ravni pod uglom φ, prava a je paralelna sa ravni slike. Prikaz konstrukcije geometrijskog mesta centra perspektive. 93
Slika 97. Specijalan slučaj prave i ravni pod uglom φ, prava a je paralelna sa ravni slike. Geometrijsko mesto centara perspektive. ... 93
Slika 98. Dve ravni pod pravim uglom. Prikaz konstrukcije geometrijskog mesta centra perspektive............. 94
Slika 99. Dve ravni pod pravim uglom. Geometrijsko mesto centara perspektive. .. 95
Slika 100. Specijalan slučaj dve ravni pod pravim uglom, ravan α je paralelna sa ravni slike. 95
Slika 101. Dve ravni pod uglom φ. Prikaz konstrukcije geometrijskog mesta centra perspektive. 96
Slika 102. Dve ravni pod uglom φ. Geometrijsko mesto centara perspektive. .. 96
Slika 103. Specijalan slučaj dve ravni pod uglom φ, ravan α je paralelna sa ravni slike. 97
Slika 104. Jednake dužine na različitim pravcima ... 98
Slika 105. Jednaki uglovi paralelnim ravnima. Princip konstruisanja geometrijskog mesta centara perspektive u ravni. ... 98
Slika 107. Jednaki uglovi u različitim ravnima. Princip konstruisanja geometrijskog mesta centara perspektive .. 100
Slika 108. Jednaki uglovi u različitim ravnima. Geometrijsko mesto centara perspektive 100
Slika 110. Nedovoljan broj relacija. Nemogućnost određivanja debljine zida (Prozor vetrenjače u Bačkoj Topoli; V. Stojaković). ... 108
Slika 111. Korišćenje simetrije, odnosno jednakosti (Bočni prozor crkve Svetog srca Isusovog u Futogu; V. Stojaković). ... 109
Slika 112. Epipolarna ravna .. 112
Slika 113. Veza projekcija tačke ... 113
Slika 114. Detekcija tačke na osnovu dve perspektivne slike ... 113
Slika 115. Veza projekcija nedogleda jedne prave na dve fotografije ... 115
Slika 116. Veza projekcija ugla između dve upravne prave ... 116
Slika 117. Detekcija pravog ugla na osnovu dve perspektivne slike ... 116
Slika 118. Veza projekcija ugla φ između dve prave ... 117
Slika 119. Epipolarni tragovi .. 118
Slika 120. Projekcija prave na dve perspektivne slike ... 119
Slika 121. Generisanje kocke iz dve orijentisane fotografije, proces manuelne fotogrametrije (V. Stojaković). 120
Slika 122. Model koji kreira korisnik utemeljen jednostavnih tela, crkva Srca Isusovog u Apatinu (V. Stojaković). ... 122
Slika 123. Automatski model portala u York Minster-u (Mastion 2008). 122
Slika 124. Shema generisanja prostora na osnovu jedne slike .. 125
Slika 125. Shema generisanja prostora na osnovu više slike .. 126
Slika 126. Netačan Martinijev prikaz Panteona, 15. vek, preuzeto od Mindeguía, 2010. 128
Slika 130. Različit stepen realizma. Piranezi (Giovanni Battista Piranesi), Vedute di Roma 129
Slika 132. Jermenska crkva. ... 133
Slika 133. Situacija mesta gde je bila crkva ... 133
Slika 134. Konstrukcija elemenata u ravni fotografije .. 134
Slika 135. 3D konstrukcija centra perspektive ... 134
Slika 136. Konstrukcija centra perspektive u ravni fotografije ... 135
Slika 137. Konstrukcija ravni iz skupa γ .. 136
Slika 138. Konstrukcija kose ravni .. 136
Slika 139. Konstrukcija krova tornja ... 136
Slika 140. Prikaz modela i fotografije. ... 137
Slika 141. Modelovanje objekta. ... 137
Slika 143. Kapela svetog Vendelina. Postojeće stanje. ... 139
Slika 144. Odnos vidnih zrakova tri međusobno upravna pravca i centra perspektive. 140
Slika 145. Konstrukcija distance.. 141
Slika 146. Obaranje fasadnih ravni. .. 142
Slika 147. Konstrukcija tornja. ... 143
Slika 148. Konstrukcija potrebnih atributa i analiza položaja elemenata. ... 145
Slika 149. Konstrukcija kontrfora... 146
Slika 150. Proces restitucije. ... 146
Slika 151. Fasada i osnove krova kapele u Kljajičevu... 147
Slika 152. Modelovanje postojećeg stanja kapele u Kljajičevu. ... 148
Slika 153. Model postojećeg stanja kapele u Kljajičevu... 148
Slika 154. Poređenje postojećeg i originalnog stanja kapele u Kljajičevu... 149
Slika 155. Modelovanje nepostojećeg dela kapele u Kljajičevu... 149
Slika 156. Virtuelna rekonstrukcija kapele u Kljajičevu (Stojaković i Tepavčević 2009). 150
Slika 157. Crkva u Banoštoru 1913. godine (fotografija je vlasništvo Hanca Suprica (Hans Supritz))......... 151
Slika 158. Crkva u Banoštoru 1975. godine (Svečnjak 1975) ... 152
Slika 159. Crkva u Banoštoru 2005. godine. ... 152
Slika 162. Uglovi nagiba svake presečnice prema vertikali, pogled sa jugozapada 155
Slika 163. Nagib krova tornja, južna strana (levo), zapadna strana (desno). ... 155
Slika 164. Elementi slike. ... 155
Slika 165. Uglovi nagiba stepenišnih zrakova... 156
Slika 166. Određivanje visine tavanice. .. 158
Slika 167. Proces modelovanja stepeništa... 159
Slika 168. Model tornja u Banoštoru. ... 159
Slika 169. Spajanje fotogrametrijskog modela crkve i virtuelne rekonstrukcije tornja: oltarska strana crkve (levo), bočna strana crkve (desno)... 160
Slika 170. Planovi Trga slobode iz različitih perioda .. 162
Slika 171. Poređenje planova Trga slobode iz različitih perioda... 162
Slika 172. Shema transformacija objekata na Trgu slobode. .. 163
Slika 173. Ortofoto snimak Trga slobode u Novom Sadu ... 164
7.2 OPIS I IZVOR ILUSTRACIJA UZ NASLOVE POGLAVLJA

x Preuzeto sa http://evasion.inrialpes.fr/Publications/1999/Fau99/

xiii Kljajićevo, 1989. godina. Fotografija je vlasništvo gospodina Johana Šimta (Johann Schmidt)