Investigation of electrical properties of vacuum annealed titanium oxide containing ceramics#

Agnese Pavlova1,*, Janis Barloti2, Valdis Teters2, Janis Locs1, Liga Berzina-Cimdina1

1Riga Technical University, Riga Biomaterials Innovation and Development Centre, Pulka Street 3/3, Riga, LV-1007, Latvia
2Riga Technical University, Division of Electronic Equipment, Latvia

Received 16 September 2009; received in revised form 24 November 2009; accepted 22 December 2009

Abstract
Titanium oxide ceramics were prepared using extrusion process and subsequent thermal treatment in two stages – in air atmosphere at 1150°C and than in vacuum at temperatures between 1200 and 1350°C. Influence of thermal treatment conditions on microstructure and electrical properties (thermopower, conductivity of semiconductor and electron activation energy) of obtained ceramics was investigated. It was confirmed that all samples treated in vacuum are n-type semiconductors. It was also found that the increase of temperature during sintering in vacuum leads to increased electrical conductivity, however, the highest thermopower values were obtained for samples thermally treated in vacuum at 1225°C. Electron activation energy (ΔE), calculated using dependence of conductivity of samples on temperature, was is in the range from 0.049 to 0.061 eV. The obtained products can be used as electrodes for water treatment technology based on photoelectrolysis.

Keywords: titanium oxide, vacuum sintering, microstructure, electrical properties

I. Introduction
There are many innovative technologies based on TiO2 applications such as photoelectrochemical cells, photocatalytic treatment of organic waste and electrochemical sensors [1–6]. Among many semiconductors employed TiO2 is known to be a good photocatalyst. TiO2 has high photosensitivity and strong oxidizing power, it is non-toxic, easily available and has a long-term stability [7,8]. High attention is paid to water pollution and its treatment. Electrolysis and many other methods have been adopted to reduce the pollution. Conductive titanium oxide ceramics can be used for microbiologically contaminated water purification [9]. It is well known that titanium oxide ceramics have good biocompatibility and hemocompatibility [10,11]. Rutile is thermodynamically the most stable of the three crystal TiO2 modifications. Rutile has a smaller band gap (3.0 eV) compared to anatase (3.2 eV) and therefore is chemically more stable [12,13]. Titanium oxide can form nonstoichiometric compounds, which have different electrical properties than stoichiometric titanium oxide. Titanium oxide with the common formula TiO2n−1 (where n is a number from 4 to 10), or Magnelli phases, are compounds which have additional electron level in band gap and exhibit semi-conducting properties [14]. Electron level position in the band gap and electron activation energy (energy necessary to move an electron from the valence zone to the conductivity zone or from the valence zone to free electron levels in the band gap) of obtained titanium oxide ceramics depend on the processing conditions (especially thermal treatment conditions). Electrical properties of titanium oxide are sensitive to the oxygen partial pressure, since it changes the concentration of electrons or electron holes in the oxides. Owing to the fact that the porosity within the oxides may alter their inside oxygen partial pressure, the porosity in a semiconducting oxide could affect its electrical properties [15]. In addition, grain boundary is another major microstructural feature in a semiconducting oxide. This is because grain boundary may absorb charge carriers and in turn repel the same charge carriers travelling to the boundary as part of the conduction process. In some cases a second phase may

Paper presented at 8th Students’ Meeting, SM-2009, Processing and Application of Ceramics, Novi Sad, Serbia, 2009
* Corresponding author: tel: +371 670 89 605, fax: +371 670 89 619, e-mail: agnese.pavlova@rtu.lv
precipitate along grain boundaries to become a barrier for electrical conduction. Thermal treatment of titanium oxide ceramics in vacuum atmosphere at different temperatures changes not only electrical properties but also microstructure of the material.

The aim of this study is to investigate microstructure and electrical properties of titanium oxide ceramics prepared using extrusion process and subsequent thermal treatment in air at 1150°C and than in vacuum at different temperatures. The obtained products can be used as electrodes for water treatment technology based on photoelectrolysis. In comparison with currently widely used Pt, PbO₂, Ti/SnO₂ with Sb₂O₅ impurities, IrO₂, Pt-Ir, RuO₂, MnO₂, Ti/diamond with boron impurities, as well as graphite electrodes, titanium dioxide has good chemical stability, high resistance to corrosion, but much lower production cost [16].

II. Experimental

Sample preparation

Titanium oxide samples were prepared using industrial scale extruder. Extrusion mass consisted of anatase 75 wt.% (TiO₂, Hombitan, Sachtleben Chemie GmbH), water 22 wt.%, lubricant 3 wt.% (PRODUKT KP 5144) and binder 2 wt% (ZUSOPLAST C 93, Zschimmer & Schwarz GmbH & Co KG). The obtained green bodies (Ø 10 mm) were heated at 1150°C with 5 °C/min heating rate and 2 h dwell time to burn out the additives and obtain rutile crystallographic modification. Further, samples were treated in vacuum (6.6·10⁻³ Pa) at different temperatures between 1200 and 1350°C with 7 °C/min heating rate and 1 h dwell time. After sintering the samples were cut into 20 mm long rods. Ends of the samples were polished with SiC paper in the sequence of 280, 1500, 2000 grit and cleaned with ethanol. Sample surface was cleaned using vacuum sparking discharge. For better electrode-material contact a thin aluminium film (0.2–0.3 μm) was deposited on the ends of the samples using vapour deposition technique.

Crystalline phases in the samples were identified using XRD (Fig. 2). The main diffraction pattern has characteristic peaks for

III. Results and discussion

Density of samples was determined using Archimedes method and was found to be in range from 3.32 to 3.64 g/cm³. Water uptake was 3 to 4 % and total porosity 10 to 14%.

The crystalline structure of the prepared titanium oxide samples was examined using XRD (Fig. 2). The main diffraction pattern has characteristic peaks for
TiO$_2$ rutile phase. However, a few very weak peaks are visible too, which could be indication for presence of some nonstoichiometric titanium dioxide phases.

SEM micrographs of titanium oxide samples treated in vacuum at different temperatures are shown in Fig. 3. The microstructure of sample treated at 1200°C differs between the middle and the edge of the sample. In the middle of the sample grains are larger than on the edge of the sample. Increasing the treatment temperature induces densification and grain growth. Thus, grain size reaches 30 μm at 1350°C compared to 10 μm at 1200°C. It was also observed that the middle of all samples was more porous than the edge of the samples. Such density (and grain size) difference could occur because of the used extrusion forming technology.

Thermopower measurements were made in negative temperature range down to −180°C by cooling with liquid nitrogen (LN$_2$) and in positive range up to +400°C by thermoresistive heating (Fig. 4). At equal temperature gradients in all measured temperature range the samples sintered in vacuum at 1225°C had the highest thermopower. It confirms that thermal treatment conditions are very important for electrical properties of titanium oxide ceramics.

Conductivity was calculated from the resistance. It was found that increase of temperature during sintering in vacuum leads to increased electrical conductivity (from 15 to 55 Ω$^{-1}$·m$^{-1}$). In semiconductor physics, the higher thermopower value does not provide the best conductivity in semiconductor materials. This is probably due to the electric conductivity along grain bound-
aries, since at higher temperatures the largest grains are created, decreasing grain border surface area.

The obtained results also showed that the samples sintered in air have no semiconducting properties, whereas all samples treated in vacuum are n-type semiconductors. Electron activation energy (ΔE), calculated using dependence of conductivity of samples on temperature, was in the range from 0.049 to 0.061 eV.

IV. Conclusions

Titanium oxide ceramics were prepared using extrusion process and subsequent thermal treatment in air at 1150°C and than in vacuum at different temperatures up to 1350°C. It was confirmed that the samples sintered in air have no semiconducting properties, whereas all samples treated in vacuum are n-type semiconductors. The increase of temperature during sintering in vacuum leads to increased electrical conductivity, however, the highest thermopower values were obtained for samples thermally treated in vacuum at 1225°C. Electron activation energy was in the range from 0.049 to 0.061 eV. All these confirm that thermal treatment conditions are very important for electrical properties of titanium oxide ceramics.

Acknowledgment: This work has been partly supported by the European Social Fund within the National Program “Support for carrying out doctoral study programs and post-doctoral researches” project “Support for the development of doctoral studies at the Riga Technical University”.

References