HYPERHOMOCYSTEINEMIA AND INFLAMMATORY BIOMARKERS ARE ASSOCIATED WITH HIGHER CLINICAL SYNTAX SCORE IN PATIENTS WITH STABLE CORONARY ARTERY DISEASE

HIPERHOMOCISTEINEMIJA I BIOMARKERI INFLAMACIJE SU POVEZANI SA VIŠIM KLINIČKIM SINTAKS SKOROM KOD BOLESNIKA SA STABILNOM KORONARNOM ARTERIJSKOM BOLEŠĆU

Authors Djuric Predrag1, Mladenovic Zorica1, Spasic Marijan1, Jovic Zoran1, Maric-Kocijancic Jelena1, Prokic Djordje2, Subota Vesna3, Radojicic Zoran4, Djuric Dragan5, Vojnosanitetski pregled (2019); Online First November, 2019.

UDC:

DOI: https://doi.org/10.2298/VSP190916129D

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
HYPERHOMOCYSTEINEMIA AND INFLAMMATORY BIOMARKERS ARE ASSOCIATED WITH HIGHER CLINICAL SYNTAX SCORE IN PATIENTS WITH STABLE CORONARY ARTERY DISEASE

HIPERHOMOCISTEINEMIJA I BIOMARKERI INFLAMACIJE SU POVEZANI SA VIŠIM KLINIČKIM SINTAKS SKOROM KOD BOLESNIKA SA STABILNOM KORONARNOM ARTERIJSKOM BOLEŠĆU

Djuric Predrag¹, Mladenovic Zorica¹, Spasic Marijan¹, Jovic Zoran¹, Marić-Kocijancic Jelena¹, Prokic Djordje², Subota Vesna³, Radojicic Zoran⁴, Djuric Dragan⁵

¹Clinic of Cardiology and Urgent Internal Medicine, Military Medical Academy, Belgrade, Serbia
²Institute for Radiology, Military Medical Academy, Belgrade, Serbia
³Institute for Biochemistry, Military Medical Academy, Belgrade, Serbia,
⁴Faculty of Organizational Sciences, University of Belgrade, Serbia
⁵Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Corresponding author:
Djuric Predrag
Clinic of Cardiology and Urgent Internal Medicine,
Military Medical Academy,
Crnotravska 17, Belgrade
e-mail: predrag.a.djuric@gmail.com
mob: +38160 7170607

home: Nikole Dobrovica 8/16
 Belgrade, Serbia
tel/fax 381 113187255
Abstract

Background/Aim. Previous studies have confirmed a positive correlation between homocysteine levels and a greater risk for acute coronary syndrome and stroke, but there are no available data to support an association between homocysteine and inflammatory markers and the severity of coronary artery disease according to Clinical SYNTAX score in patients with stable angina. The aim was to determine the association between homocysteine and inflammatory biomarkers levels: interleukin 6, high sensitive C reactive proteine, fibrinogen, erythrocyte sedimentation rate and severity of coronary artery disease according to Clinical SYNTAX score. Methods. Eighty-two patients with stable angina pectoris (average age 65 ± 8 years, 28.9% females) underwent coronary angiography and were divided into three groups according to Clinical SYNTAX score: the group I < 22 (39 patients), the group II 23-32 (16 patients), the group III > 33 (27 patients). The severity and complexity of coronary artery disease were calculated by Clinical SYNTAX score, multiplying the SYNTAX score with the modified ACEF score, based on the patients’ left ventricular ejection fraction, age and creatinine clearance (derived with Cockcroft–Gault equation). Results. Homocysteine levels were significantly higher in patients with high Clinical SYNTAX (the group I: median (IQR): 10.20 (3.97), the group II: 10.45 (5.77), the group III: 14.70 (7.50), p = 0.005). Patients in group III had significantly higher homocysteine levels compared to group I (p = 0.001). We also found positive association between inflammatory biomarkers (interleukin 6, high sensitive C reactive proteine, fibrinogen, erythrocyte sedimentation rate) and severity of coronary artery disease according to Clinical SYNTAX score (p = 0.017, 0.001, 0.032, 0.049 respectively). We detected significantly lower plasma levels of Vitamin B12 in group III and group II in comparison with group I (the group I: median (IQR): 238 (160), the group II: 171 (160), the group III: 172 (102), p = 0.022), which indicate its important role in homocysteine metabolism. Conclusion. Elevated plasma levels of homocysteine, interleukin 6, high sensitive C reactive proteine, fibrinogen, erythrocyte sedimentation rate were detected in patients with high Clinical SYNTAX score (> 33). Our results showed that hyperhomocysteinemia and some inflammatory biomarkers can predict more severe and extent coronary artery disease in stable angina patients.
Keywords: coronary artery disease, homocysteine, inflammatory biomarkers, Clinical SYNTAX score.

Апстраkt
Увод/ циљ. Предходне студије су потврдили позитивну корелацију између нивоа homocisteina и већег ризика настанка акутног коронарног синдрома и мошданог удара, али није било истрошивања која је испитивала пoveзаност између вредности homocisteina и инфламацијских маркера и тежине коронарне артеријске болести према клиничком SYNTAX skoru kod пацијената са стабилном ангином пекторис. Циљ овог истрошивања је да се утврди пoveзаност између концентрације homocisteina и инфламацијских biomarkера: interleukina 6, високо сензитивног C reaktivnog proteina, fibrinogena i sedimentacije eritrocita и stepena тежине коронарне артеријске болести према клиничком SYNTAX skoru. Metod. Код 82 болесника са стабилном ангином пекторис (процењена старост 65 ± 8 година, 28.9% жена) урађена је коронарографија, након шта су пodeljeni у три групе према клиничком SYNTAX skoru: I grupa < 22 (39 пацијената), II grupa 23-32 (16 пацијената), III grupa > 33 (27 пацијената). Степен тежине коронарне артеријске болести одреđен је према клиничком SYNTAX skoru, мноženjem SYNTAX I skora и modifikованог ACEF skora, који узима у обзир ejekciju frakciju leve komore, starost pacijenta и kliренс kreatinina (изведеног помоћу Cockcroft-Gault-ove jednačine). Rezultati. Вредности homocisteina bile су значајно више код пацијената са високим клиничким SYNTAX skorom (I grupa: medijana (IQR): 10.20 (3.97), II grupa: 10.45 (5.77), III grupa: 14.70 (7.50), p = 0.005). Pacijenti III grupe su imali значајно више вредности homocisteina у пoredenju sa I grupom (p = 0.001). Такође смо детектирали позитивну корелацију између inflamацијских маркера (interleukina 6, високо сензитивног C reaktivног proteина, fibrinogena i sedimentacije eritrocita) и тежине коронарне артеријске болести према клиничком SYNTAX skoru (p = 0.017, 0.001, 0.032, 0.049 redom). Detektovali smo značajno нише вредности vitamina B12 у grupama III и II у односу на grupu I (I grupa: medijana (IQR): 238 (160), II grupa: 171 (160), III grupa: 172 (102), p = 0.022) што ukazuje на njegovu važnu ulogу u metabolизму homocisteina. Закljučak. Povišene koncentracije homocisteina, interleukina 6, високо сензитивног C reaktivнog proteина, fibrinogena i sedimentacije eritrocita u plazmi детектироване су код пацијената са високим клиничким SYNTAX skorom (> 33). Naši rezultati су показали да
Amino acid homocysteine (HCy), participates in the initiation of endothelial dysfunction, and increases oxidative stress\(^1,2\), leading to accelerated atherosclerosis. Homocysteine has been associated with hypercoagulability state and increased thrombus burden\(^3,4\) and has been recognized as a risk factor for acute coronary syndrome and ischemic stroke\(^5,6\). Recent studies\(^7,8\) concluded that hyperhomocysteinemia may develop as a consequence of chronic immune activation, which implicates the importance of simultaneously measurement both inflammatory markers and homocysteine levels, as well as vitamin B12 and folic acid.

Coronary artery disease (CAD) is mostly caused by atherosclerosis, which is considered to be an inflammatory disease\(^9,10\). Inflammatory factors have a substantial role in the initiation and progression of CAD\(^11\), and circulating markers reflect the inflammatory process within the coronary artery wall. During clinical practice, we have found that a certain number of patients without traditional risk factors for CAD had significant changes in coronary arteries. Thus, it is necessary to determine if some other risk factors may contribute to the formation and progression of CAD. Several studies have shown that fibrinogen is related to increased cardiovascular (CV) risk\(^12\) and plaque progression in patients with acute coronary syndrome and stable angina\(^13-15\). The AtheroGene study\(^16\) investigated 1806 patients with documented CAD and stable angina pectoris concluded that high fibrinogen and C reactive protein (CRP) values were predictive for future CV risk, but did not provide additional information on top of traditional risk factors. CRP has been studied in patients with unstable and stable angina pectoris\(^17\). Very recent study\(^18\) found a positive association between CRP levels and intrahospital mortality in patients with ST-elevation myocardial infarction. Another important inflammatory marker, interleukin 6 (IL-6), is engaged in pathogenesis of CAD, participating in plaque formation and its' destabilization\(^19\). High levels of IL-6 have detected in patients with unstable CAD, in comparison with stable angina patients\(^20\).
Assessment of CAD severity can be done by using different scores, and according to the number of the diseased coronary artery. Clinical SYNTAX score (CSS), which combines SYNTAX I and modified ACEF score provides additional clinical characteristics based on the patient’s left ventricular ejection fraction (LVEF), age and creatinine clearance derived using the Cockcroft–Gault equation21. It has been shown that CSS has predictive ability for adverse clinical outcome after percutaneous coronary intervention22-24 (PCI) by incorporating clinical variables, but it also can be used in the assessment of the severity of CAD. Aim of this clinical study is to investigate and determine the correlation between inflammation markers and metabolism of homocysteine and CAD and its severity in patients with stable angina pectoris.

Methods

The study included 82 patients with stable angina pectoris, and all had positive myocardial ischemia noninvasive tests, either on treadmill exercise test or pharmacological echocardiography dobutamine stress test. Patients with acute coronary syndrome, active inflammatory diseases, infections and malignant diseases, as well as with previous myocardial infarction, history of coronary revascularization and severe valvular disorders were excluded. Several standard laboratory parameters were measured: fasting glucose, total and LDL cholesterol, triglycerides, creatinine, erythrocyte sedimentation rate (ESR), leukocyte count (Le), high sensitive C reactive protein (hs- CRP) and fibrinogen.

The homocysteine level, expressed in μmol/L, was determined using a commercially available test on System Siemens nephelometric analyzer by immunonephelometry method in EDTA plasma samples. Sample coefficient of variation (CV) was 4.2%, and reference range 4.995-15.000 μmol/L. For serum IL-6 measurement we used DPC Immulite 2000, Siemens analyzer by chemiluminescence immunometric assay. Sample coefficient of variation (CV) was 4.0%, and reference range 0.0-5.9 pg/mL.

Subjects assessed as positive for ischemic heart disease underwent coronary angiography in order to determine the severity of CAD according to Clinical SYNTAX score22,23. According to the severity of CAD, we divided all the patients into the three groups regarding the Clinical SYNTAX score: the group I (< 22 points), the group II (22-32 points), the group III (> 33). We, also, estimate the severity of CAD according to the number of the affected coronary vessel (1- vessel, 2- vessel and 3-vessel disease). For assessment of CAD severity, we used Clinical Syntax score, calculated multiplying the
value of SYNTAX I score and modified ACEF score24,25 based on the patients’ left ventricular ejection fraction, age and creatinine clearance derived using the Cockcroft–Gault equation.

Statistical analysis was done using SPSS statistical software 25.0. Parameters average values and standard deviation were used for data with a normal distribution. The median and interquartile range (IQR) were used for the data without normal distribution. A significant difference between the groups was measured using the Mann Whitney test for two independent groups and K independent samples (Kruskal Wallis) and categorical variables were compared by the chi-square test (χ^2).

The association between HCy serum levels and the severity of angina, clinical and anatomic SYNTAX score was estimated with logistic regression analysis. The results between groups were described as odds ratios (Mantel-Haenszel current odds ratio-OR) with a 95% confidence interval (95%CIs). Cluster analysis with Ward’s method was used for finding the cut-off points. For statistically significant differences we used $p < 0.05$.

Results

A total of 82 patients with symptoms of stable angina (average age 65±8 years, 28.9% females) underwent coronary angiography and were divided into three groups according to CSS: the group I (< 22, $n = 39$), the group II (23-32, $n = 16$), the group III (> 33, $n = 27$).

Patients clinical characteristics and laboratory parameters from all the three groups are summarized in Table 1. There were significant differences between all three groups regarding age, physical activity, triglycerides, creatinine clearance and diastolic blood pressure on admission to hospital ($p < 0.05$). On the other hand, there was no statistically significant correlation between gender, active smoking, hypertension, family history, diabetes mellitus, fasting glucose, total and LDL cholesterol, atherosclerosis index, body mass index (BMI), acidum uricum, left ventricular ejection fraction (LVEF), end diastolic, end systolic diameter of left ventricular and the severity of CAD according to CSS. Homocysteine, inflammatory biomarkers (IL-6, hs-CRP, fibrinogen, ESR, leukocytes), folic acid, vitamin B12, prothrombotic time (PT), activated partial thromboplastin time (APTT), as well as the number of affected and treated coronary artery arteries in all 3 groups are presented in Table 2.

There was a statistically significant positive correlation between homocysteine levels and the severity of CAD according to Clinical SYNTAX score. Homocysteine levels were
significantly higher in patients with high Clinical SYNTAX (> 33). Patients in group III had significantly higher HCY levels compared to group I (the group I: median (IQR): 10.20 (3.97), the group II: 10.45 (5.77), the group III: 14.70 (7.50), Kruskal Wallis test, p = 0.005) (Figure 1).

Then, we evaluated the odds ratio (OR) for CCS according to HCY values (I group HCY < 15 μmol/L, II group > 15 μmol/L) using multivariable logistic regression analysis (Mantel-Haenszel common OR with 95% confidence intervals). The patients with HCY > 15 μmol/L had more severe CAD according to CSS. We found that the OR between group III and group I was 8.125 with 95% CI (2.258-29.241, p = 0.001), and the relative risk was 4.695 (1.715-12.821). The high-risk patients for CAD were in the group with HCY values > 15 μmol/L (Figure 2). In multiple logistic regression analysis, where the Clinical SYNTAX score was dependent variable, and homocysteine levels were independent variables we found statistically significant differences in HCY levels between group III (> 33) and group I (< 22) (Odds ratio = 1.230, 95% CI = 1.079-1.403, p = 0.002 and Odds ratio = 1.153, 95% CI = 1.015-1.309, p = 0.028, respectively). In multiple logistic regression analysis, where the multivessel disease were dependent variable, and homocysteine levels were independent variables we found significant differences in HCY levels between 3- vessel and 2- vessel disease (Odds ratio = 1.217, 95% CI = 1.041-1.422, p = 0.014).

We detected significantly lower plasma levels of Vitamin B12 in group III compared to group I, which indicate its important role in HCY metabolism (the group I: median (IQR): 238 (160), the group II: 171 (160), the group III: 172 (102), Kruskal Wallis test, p = 0.022). Our results showed that HCY values were significantly higher in groups II and III, where vitamin B12 values were significantly lower. On the other hand, we did not find differences in folic acid values between all three groups (Table 2). We found that the inflammatory biomarkers (IL-6, hs-CRP, fibrinogen, ESR) were all in positive correlation with the severity of coronary artery disease according to CSS (Table 2). The presence of CAD was associated with higher values of IL-6 (the group I: median (IQR): 2.49 (2.67), the group II: 3.10 (3.91), the group III: 4.80 (4.52), Kruskal Wallis test, p = 0.017) (Figure 3).

We detected significant differences in hs- CRP values between 3 groups, and additional statistical analysis showed differences between group III and group I, and group III and group II (the group I: median (IQR): 2.75 (5.77), the group II: 1.01 (2.78), the group III:
Comparison of the groups demonstrated significant differences in fibrinogen (Figure 4) and ESR values between group III and group I.

Fibrinogen in the group III was higher than in the groups I and II which was statistically significant (the group I: median (IQR): 3.30 (0.90), the group II: 3.55 (0.85), the group III: 3.70 (0.60), Kruskal Wallis test, p = 0.032). Patients with higher CSS had higher values of ESR (the group I: median (IQR): 18 (25), the group II: 22.5 (30), the group III: 26 (29), Kruskal Wallis test, p = 0.049).

Discussion

Results from our study showed a significant correlation between the severity of CAD represented by Clinical SYNTAX score and the levels of homocysteine and inflammatory markers (hs-CRP, ESR, interleukin-6, fibrinogen).

Homocysteine reduces the production of nitric oxide (NO) and increasing the proliferation of smooth muscle cells\(^{26,27}\). Homocysteine levels are influenced by Vitamin B12 and folic acid, but also by a chronic immune response and renal function\(^{28}\). Unlike a recent study\(^{29}\) in which a positive correlation between hyperhomocysteinemia and SYNTAX I score was found in patients with the acute coronary syndrome (ACS), we conduct the study where we found an association between values of homocysteine and CSS, but in stable angina patients. Two separate studies\(^{30,31}\) have shown that HCy were higher in patients with the three-vessel disease compared to those with single-vessel CAD. A positive correlation between hyperhomocysteinemia and acute coronary syndrome can be explained by its role in oxidative stress, endothelial dysfunction, and its prothrombotic activity, inducing progression of stable to unstable atherosclerotic plaque\(^{13,14}\). McCully and al\(^{32}\) have shown that hyperhomocysteinemia can lead to accelerated atherosclerosis in the general population. The study we have done showed positive correlation between HCy levels and the severity of CAD according to CSS in patients with stable angina pectoris.

The results of our research are consistent with the results of the previous, but a positive correlation was found, not only with homocysteine levels but also with the concentrations of investigated inflammatory markers. Additional statistical analysis of the groups according to CSS showed that the levels of the inflammatory markers (hs-CRP, ESR, interleukin-6, fibrinogen) were in correlation with the serum HCy levels and that a significant difference was detected between group III and group I. One explanation could
be the synergistic action of homocysteine and inflammatory markers on the inflammation process in the blood vessel wall, which was the conclusion of the recent study19 who detected the association of moderate hyperhomocysteinemia and cellular immune-mediated activity. Another assumption of the study was that the accumulation of homocysteine in the vessel wall might be due to a deficiency of Vitamin B 12 which is related to chronic activation of the immune system. The results from recent study33 have shown that hyperhomocysteinemia in older patients with ACS is a significant predictor of total mortality and MACE. Our study, included patients with stable angina pectoris, have shown the average age of 70 years, in group III who had significantly higher levels of homocysteine than group I, with an average age of 62 years, which is consistent with the fact that homocysteine levels raise with aging. We detected significantly lower plasma levels of Vitamin B12 in group III and group II in comparison with group I, which indicate its important role in homocysteine metabolism.

It is well known that inflammation is the initial step in atherosclerotic plaque formation, progression, and development of arterial thrombus burden34. Inflammatory mediators have an essential role in plaque destabilization and consequence rupture35.

Some cohort studies36 revealed that patients with multiple traditional risk factors did not have CAD, and that is one of the reasons why we conduct a study where we investigated traditional risk factors on one side, and homocysteine levels and the inflammatory markers on the other. Patients with more severe CAD (CSS > 33) were older, which can be explained by the cumulative effects of different CV risk factors in an extended period. Elderly patients have a high incidence of CAD and worse cardiovascular prognosis37.

The results of our study showed significant correlation between inflammatory markers (hs-CRP, ESR, interleukin-6, fibrinogen) and severity of CAD according to CSS (p < 0.05). C reactive protein is a biomarker of systemic inflammation, and elevated levels are detected in a different condition, such as infection, injury and other inflammatory stimuli38.

Recent study39 involved patients with ST-elevation acute myocardial infarction (STEMI) detected higher intrahospital mortality in those with higher CRP levels on admission to hospital. Other study40 also showed a positive correlation between CRP and recurrent coronary events in ACS patients, but our study, to the best of our knowledge, was the first conducted to establish an association between CRP levels and the severity of CAD according to CSS in patients with stable angina pectoris. In the early stage of inflammation,
CRP provokes endothelial dysfunction and, therefore accelerate atherosclerosis by reducing NO release. Some studies41,42 have shown that high CRP levels are associated with future cardiovascular events in patients with unstable and stable coronary disease, but this is the first study in which CSS was used for severity assessment of CAD.

Erythrocyte sedimentation rate (ESR) has a positive association with traditional risk factors: gender, age, total cholesterol, BMI, diabetes, and active smoking43. Reykjavik Study44 has shown that ESR was an independent long-term predictor of coronary artery disease in both men and women. The results of our study are consistent with the study45 in which the ESR was related to the extent of atherosclerosis of coronary artery, but, unlike this study, we found an association with the extent of CAD according to the more accurate CSS.

Interleukin 6 (IL-6) plays an important role in the pathogenesis of CAD46, directly, leading to endothelial dysfunction, macrophage/ monocytes initiation, extracellular matrix degradation, and indirectly, stimulating the synthesis of coagulation factors. IL-6, also, initiate synthesis of other inflammatory markers in the liver47. MESA study (Multi-Ethnic Study of Atherosclerosis)48 with 6.617 participants without CV disease after 13.2 years of follow up revealed strong association and predictive value of IL-6 in development of CV disease, heart failure, and total mortality. A large meta-analysis49 which included 17 studies with 5.730 patients with CAD and 19.038 subjects in the control group detected a strong association between IL-6 concentrations and CAD. Our results indicates that elevated IL-6 values in the highest tercile were in positive correlation with CAD severity according to CSS are consistent with these findings. Elevated concentrations of IL-6 are detected at the very beginning of the inflammation in response to tissue damage and is a "warning signal" for the entire organism50. Concentrations of IL-6 correlate with obesity, which can explain the increased risk of CAD in obese patients. Our results are consistent with the previous study51 because we found that 57.32\% of patients were overweight (BMI 25-29.9), and 26.83\% were obese (BMI > 30). Also, IL-6 stimulates the synthesis of the C reactive protein52, which can explain the results of our study where patients with a more severe CAD (CSS > 33), with high values of interleukin 6, also had elevated CRP values. The results of our study are entirely consistent with a recent study53 who detected elevated values in 100 patients with coronary angiography proven CAD, but we found a positive association with CAD severity according to CSS (p < 0.05). An explanation for the above
may be the fact that the CSS takes into account the patient's age, renal function, and left ventricular ejection fraction.
A meta-analysis\(^5^4\) comprising 31 studies with 154,211 subjects detected the correlation between fibrinogen concentration and the risk of CAD, stroke and other vascular mortality. A recent study\(^5^5\) on 3,545 patients with stable angina pectoris during 7.3-10.2 years of follow up showed that fibrinogen is a long-lasting independent marker of acute myocardial infarction and total mortality, and those fibrinogen concentrations were highest in patients with coronary angiographically most complex CAD, but not according to more sensitive CSS. Tabakci and al\(^5^6\) detected the severity and complexity of CAD in 134 patients, but patients were divided into three groups according to the values of SYNTAX score (SS control group = 0, SS intermediate group < 22, SS high-risk group > 22). In our study, we detected significantly higher fibrinogen values in the group of patients with CSS > 33. De Luca and al\(^5^7\) detected a correlation between the severity of CAD by the number of affected blood vessels and elevated fibrinogen levels. Very recent study\(^5^8\) with 440 patients with acute myocardial infarction in whom 36 (8.2\%) were identified as myocardial infarction with nonobstructive coronary arteries (MINOCA) and compared with myocardial infarction patients with obstructive CAD (MICAD), showed a significant increased fibrinogen concentration in both groups, which may be due to a myocardial infarction. Fibrinogen, as a precursor of fibrin, increases plasma viscosity, erythrocyte aggregation and has a thrombogenic potential because it connects thrombocytes in the formation of thrombus\(^5^9\).

By comparing fibrinogen between the three groups, we found the highest values in patients with CSS > 33, compared to small and intermediate-scale groups (< 32). A study of Cappelletti and al\(^6^0\) on 574 subjects who performed coronary angiography found that elevated fibrinogen levels were associated with a critical narrowing of the main tree of the left coronary artery and the proximal segment of the left anterior descending artery (LAD). The results of our study had shown that there is a correlation between the concentration of fibrinogen and other investigated markers (ESR, CRP, interleukin-6) with significant stenosis (> 50\%) of coronary arteries when we divided the subjects according to CSS. The results of our study are in agreement with the results of the studies\(^6^1,6^2\) which have shown that baseline fibrinogen values may indicate the existence of a significant CAD and have the prognostic significance of future CV diseases.
To our knowledge, this is the first study where a significant difference in homocysteine and inflammatory markers levels were found between three groups according to Clinical SYNTAX score. The results obtained in this study are consistent with previous studies, but we used CSS for assessment of severity of CAD which included patient's clinical features like left ventricular ejection fraction, age, and creatinine clearance, besides anatomical variables.

Conclusion

Elevated plasma levels of homocysteine, interleukin-6, CRP, fibrinogen, erythrocyte sedimentation rate were detected in patients with high Clinical SYNTAX score (> 33), which confirm previous findings that long-term, chronic inflammation of the coronary wall arteries preceded the formation of atherosclerotic plaques. We detected significantly lower plasma levels of Vitamin B12 in group III and group II in comparison to group I. Our results showed that both hyperhomocysteinemia and some inflammatory biomarkers could predict more severe and extensive CAD in stable angina patients. Higher values of tested parameters can be a useful prognostic indicator of the development of more severe clinical picture in patients with CAD.

REFERENCES

Figure 1. The correlation between plasma levels of homocysteine and severity of CAD according to CSS.
Figure 2. Odds ratio with 95% confidence intervals for Clinical SYNTAX score according to the homocysteine levels (HCy < 15 μmol/L, HCy > 15 μmol/L) in the study groups. Group I < 22, Group II 23-32, Group III > 33

Figure 3. The correlation between plasma levels of interleukin-6 and severity of CAD according to CSS.
Figure 4. The correlation between plasma levels of fibrinogen and severity of CAD according to CSS.

Table 1. Patients clinical characteristics and laboratory parameters from all the three groups according to Clinical SYNTAX score

<table>
<thead>
<tr>
<th>parameters</th>
<th>Clinical SYNTAX score</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>group</td>
<td>I (< 22) n=39</td>
</tr>
<tr>
<td>GENDER female (%)</td>
<td>8 (20.5)</td>
<td>1 (6.3)</td>
</tr>
<tr>
<td>GENDER male (%)</td>
<td>31 (79.5)</td>
<td>15 (93.7)</td>
</tr>
<tr>
<td>Age (years) median</td>
<td>62.0 (13.0)</td>
<td>68.5 (11.5)</td>
</tr>
<tr>
<td>IQR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVE SMOKING N (%)</td>
<td>31 (79.49)</td>
<td>11 (68.75)</td>
</tr>
<tr>
<td>Hypertension N (%)</td>
<td>38 (97.4)</td>
<td>13 (81.25)</td>
</tr>
<tr>
<td>Family history N (%)</td>
<td>27 (69.23)</td>
<td>12 (75.00)</td>
</tr>
<tr>
<td>Diabetes mellitus N (%)</td>
<td>13 (33.33)</td>
<td>3 (18.75)</td>
</tr>
<tr>
<td>Variable</td>
<td>N (%)</td>
<td>Median (IQR)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Physical activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose (fasting) (mmol/L)</td>
<td>17 (43.59)</td>
<td>6.00 (2.40)</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>7 (43.75)</td>
<td>5.60 (1.05)</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>2 (7.41)</td>
<td>6.40 (2.50)</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atherosclerosis index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atherogenic index of plasma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine Clearance (ml/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine (µmol/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidum Uricum (umol/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic blood Pressure (mmHg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diastolic blood Pressure (mmHg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEF (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End diastolic Diameter (mm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
End systolic Diameter (mm) | median (IQR) | 34.00 (7.00) | 35.50 (4.50) | 35.00 (7.00) | >0.05 (KW)

\(\chi^2 \)- chi-square test, KW- Kruskal Wallis, IQR- Interquartile range, P-values < 0.05 indicate significant differences regarding parameters between all 3 groups

Table. 2. Laboratory parameters across the three groups of Clinical SYNTAX score.

<table>
<thead>
<tr>
<th>parameters</th>
<th>group</th>
<th>Clinical SYNTAX score</th>
<th>p test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I (< 22)</td>
<td>II (23-32)</td>
</tr>
<tr>
<td>Leukocytes (x 10^9)</td>
<td>median (IQR)</td>
<td>7.03 (1.41)</td>
<td>6.71 (2.53)</td>
</tr>
<tr>
<td>ESR (mm/h) (25–75 percentiles)</td>
<td>median (IQR)</td>
<td>18.0 (25.00)</td>
<td>22.5 (33.00)</td>
</tr>
<tr>
<td>C-reactive Protein (mg/L)</td>
<td>median (IQR)</td>
<td>2.75 (5.77)</td>
<td>1.01 (2.78)</td>
</tr>
<tr>
<td>Fibrinogen (g/L)</td>
<td>median (IQR)</td>
<td>3.30 (0.90)</td>
<td>3.55 (0.85)</td>
</tr>
<tr>
<td>Interleukin-6 (pg/mL)</td>
<td>median (IQR)</td>
<td>2.49 (2.67)</td>
<td>3.10 (3.91)</td>
</tr>
<tr>
<td>Homocysteine (µmol/L)</td>
<td>median (IQR)</td>
<td>10.20 (3.97)</td>
<td>10.45 (5.77)</td>
</tr>
<tr>
<td>Folic Acid (nmol/L)</td>
<td>median (IQR)</td>
<td>14.6 (14.23)</td>
<td>13.1 (13.57)</td>
</tr>
<tr>
<td>Vitamin B12 (pmol/L)</td>
<td>median (IQR)</td>
<td>238 (160)</td>
<td>171 (160)</td>
</tr>
<tr>
<td>Prothrombin time (PV)</td>
<td>median (IQR)</td>
<td>1.05 (0.08)</td>
<td>1.01 (0.07)</td>
</tr>
<tr>
<td>Activated thromb. time (APTV) (second)</td>
<td>median (IQR)</td>
<td>31.62 (5.77)</td>
<td>30.77 (5.28)</td>
</tr>
</tbody>
</table>
x^2- chi-square test, KW- Kruskal Wallis, IQR- Interquartile range, ESR-erythrocytes sedimentation rate, P-values < 0.05 indicate significant differences regarding parameters between all 3 groups.