ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article IS THERE A CORRELATION BETWEEN BLOOD GLUCOSE CURVE AND THE INSULIN RESISTANCE DURING ORAL GLUCOSE TOLERANCE TEST IN FEMALES SUFFERING FROM POLYCYSTIC OVARY SYNDROME? DA LI POSTOJI KORELACIJA OBLIKA GLIKEMIJSKE KRIVE I REZISTENCIJE NA INSULIN U TOKU TESTA ORALNOG OPTEREĆENJA ŠEĆEROM KOD ŽENA OBOLELIH OD SINDROMA POLICISTIČNIH JAJNIKA?

Authors Svetlana Spremović Radenović*,†, Miljan Pupovac*, Vojnosanitetski pregled (2019); Online First September, 2019.

UDC:

DOI: https://doi.org/10.2298/VSP190715099S

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
IS THERE A CORRELATION BETWEEN BLOOD GLUCOSE CURVE AND THE INSULIN RESISTANCE DURING ORAL GLUCOSE TOLERANCE TEST IN FEMALES SUFFERING FROM POLYCYSTIC OVARY SYNDROME?

DA LI POSTOJI KORELACIJA OBLIKA GLIKEMIJSKE KRIVE I REZISTENCIJE NA INSULIN U TOKU TESTA ORALNOG OPTEREĆENJA ŠEĆEROM KOD ŽENA OBOLELIH OD SINDROMA POLICISTIČNIH JAJNIKA?

Svetlana Spremović Raćenović*†, Miljan Pupovac*

*Faculty of Medicine, University of Belgrade, Belgrade, Serbia; †Clinic for Gynecology and Obstetrics, Clinical Center of Serbia, Belgrade, Serbia

Correspondence to: Miljan Pupovac, University of Belgrade, Faculty of Medicine, 8 Dr Subotića Street, 11000 Belgrade, Serbia. E-mail: miljanpupovac@gmail.com
Abstract

Background / Aim. Insulin resistance occurs in approximately 60-80% of women with PCOS and in 95% of obese women with PCOS. Previous studies have shown that the shape of the glucose curve obtained during an oral glucose tolerance test (OGTT) may be useful as a metabolic screening parameter and could give insight into the future risk of diabetes mellitus type II. The aim of this study was to determine the frequency of insulin resistance according to homeostasis model assessment of insulin resistance (HOMA-IR) and indirect assessment method of insulin resistance based on insulinemias during OGTT (hereinafter ”insulinemias during OGTT”), as well as, frequency of glucose curve shapes (monophasic, biphasic, triphasic) in patients with PCOS. Also, the aim of research was testing the correlation between glucose curve shape and peak time of glucose during OGTT with presence of insulin resistance in patients with PCOS. Methods. Patients were observed according to the following parameters: presence of insulin resistance, glucose curve shape and peak time of glucose and insulin during the OGTT. Results. The observed prevalence of insulin resistance in PCOS group according to HOMA-IR > 2.5 was 66.19% and according to insulinemias during OGTT was 78.42%. The shape of the glucose curve was monophasic in 293 (70.26%) of patients, biphasic in 56 (13.43%) and triphasic in 68 (16.31%). There is statistically significant difference in the frequency of insulin resistance, according to glucose curve shape, only when it is defined by insulinemias during OGTT (p = 0.005). Conclusion. According to results of the study, the most patients with PCOS have a monophasic shape of glucose curve. When we take frequency of insulin resistance in account, we notice approximately the same frequency in all types of curves, when it is defined by HOMA-IR. On the other hand, when insulin resistance is defined by insulinemias during OGTT, resistant patients with PCOS mostly have triphasic glucose curve shape.

Key words: PCOS, glucose curve shape, OGTT.

Apstrakt

Uvod / Cilj. Učestalost insulinske rezistencije u grupi pacijentkinja sa PCOS kreće se od 60 do 80%, dok u populaciji gojaznih žena sa PCOS iznosi čak 95%. Ranija istraživanja su pokazala da oblik glikemijske krive u toku testa oralnog opterećenja glukozom (OGTT) može biti koristan metabolički skrining parametar za rizik od nastanka dijabetes melitusa tip II. Cilj rada bio je
odrediti učestalost insulinske rezistencije prema homeostaznom modelu procene insulinske rezistencije (HOMA-IR) i metodom indirektnih procene insulinske rezistencije na osnovu insulinemija u toku OGTT-a (u daljem tekstu „vrednosti insulinemija u toku OGTT-a“), kao i učestalost oblika glikemijske krive (monofazne, bifazne, trifazne) u populaciji pacijentkinja sa PCOS. Takođe, cilj studije je bio ispitivanje povezanosti oblika glikemijske krive, kao i vremena glikemijskog pika u toku OGTT-a sa insulinemijama, sa prisustvom insulinske rezistencije u populaciji žena sa PCOS. Metode. Pacijente smo posmatrali u odnosu na prisustvo insulinske rezistencije, oblik glikemijske krive i u odnosu na vreme glikemijskog i insulinskog pika u toku OGTT-a. Rezultati. Učestalost insulinske rezistencije na osnovu HOMA-IR > 2,5 iznosi 66,19%, dok na osnovu vrednosti insulinemija u toku OGTT-a iznosi 78,42%. Monofazni oblik glikemijske krive u toku OGTT-a je imala 293 (70,26%), bifazni 56 (13,43%), a trifazni oblik krive 68 (16,31%) pacijentkinja. Statistički značajna razlika u pogledu učestalosti insulinske rezistencije u odnosu na oblik glikemijske krive, registrovana je kada insulinsku rezistenciju definišemo na osnovu vrednosti insulinemija u toku OGTT-a (p = 0,005). Zaključak. Prema rezultatima studije, većina pacijentkinja sa PCOS ima monofazni oblik glikemijske krive. Kada govorimo o učestalosti insulinske rezistencije u odnosu na oblik krive, uočava se približno ista učestalost kada insulinsku rezistenciju definišemo po HOMA-IR. S druge strane, kada insulinsku rezistenciju definišemo na osnovu vrednosti insulinemija u toku OGTT-a, pacijentkinje sa insulinskom rezistencijom većinom imaju trifazni oblik glikemijske krive.

Ključne reči: PCOS, oblik glikemijske krive, OGTT.

Introduction
Polycystic ovary syndrome (PCOS) is a common endocrinopathy affecting 6-10% of reproductive-aged women. Beside the reproductive dysfunction, androgenic excess and polycystical structure of ovaries, which stands for the basic parameters that define this syndrome, the special attention should be paid to metabolic aspect of this complex disorder. PCOS is a significant risk factor in the occurrence of glucose intolerance (IGT), metabolic syndrome and diabetes mellitus type II in females. The frequency of insulin resistance in the group of patients with PCOS varies from 60-80%, while in a group of obese women with PCOS it goes up to 95%.
Oral glucose tolerance test (OGTT) with determining the level of insulinemia is used as an accepted clinical method in assessing the occurrence of insulin resistance. It is most commonly used in patients suffering from PCOS. Earlier studies showed that the shape of glucose curve during OGTT can be used as a useful metabolic screening parameter for a risk of occurring diabetes mellitus type II. Monophasic glucose curve shape goes in favour of the worsening of insulin sensitivity and the damage of beta cells, while the more complex shapes of glucose curve are correlated with the better glucose tolerance.

The aims of this study were:
1. To determine the frequency of insulin resistance in a population of females, suffering from PCOS according to HOMA-IR and according to indirect assessment method of insulin resistance based on insulinemias during OGTT (hereinafter “insulinemias during OGTT”);
2. To determine the frequency of the shape of the glucose curve (monophasic, biphasic and triphasic) in a population of females suffering from PCOS;
3. To examine the presence of the correlation between the glucose curve shape and the insulin resistance during OGTT with determining the level of insulinemias in patients suffering from PCOS.
4. To examine the possible correlation between the time of the glycemic peak during the OGTT with determining the level of insulinemias and the presence of insulin resistance in population of females suffering from PCOS.

Methods
417 female patients were included in this retrospective study, that were hospitalized on Department of Gynecological Endocrinology, Clinic for Gynecology and Obstetrics, Clinical Center of Serbia, in a period from January 1st, 2017 until December 31st, 2018. Patients were hospitalized due to the plan, regarding the further examination of irregular menstrual cycles or due to the clinical signs of hyperandrogenism. During the hospitalization patients were completely examined, including physical examination, ultrasound examination and laboratory analysis. The blood was taken from each patient in order to determine the basic hormonal status (FSH, LH, prolactin, estradiol, progesterone and testosterone) and androgen status (androstendion, 17-OH-progesterone, DHEA-S, SHBG). OGTT with determining the level of insulinemias was carried out. Patients data were collected from medical histories.
The diagnosis of PCOS was established based on the Rotterdam criteria. For establishing the diagnosis two out of the following three criteria were necessary to be fulfilled:

- Hyperandrogenism – clinical symptoms (hirsutismus and/or acne) and/or confirming biochemical analysis (increased levels of testosterone and/or androstenedion)
- Chronic anovulation – oligomenorrhea/amenorrhea
- Polycystic morphology of ovaries – at least 12 folicules with diameter 2-9 mm and volume of at least one ovary should be greater than 10 mL.

Patients, diagnosed with some other endocrinological disease (hyperprolactinaemia, hyper/hypothyroidism, Cushing syndrome, nonclassic adrenal hyperplasia) and also the patients, who were using oral contraceptive therapy or drugs that could affect the metabolism of glucose and have an impact on insulin sensitivity were excluded from this study. All stated data was collected from the medical histories of patients.

Oral glucose tolerance test (OGTT): first of all, the basic sample for glycemia and insulin level was taken from patients. Hereupon, patients drank a standard 75 g glucose solution, and samples were taken for determining glycemia and insulin at 0, 30, 60, 120 and 180 minutes.

Insulin resistance was defined in 2 different ways:

The first way of determining the insulin resistance was by using the homeostasis model assessment of insulin resistance (HOMA-IR). HOMA-IR was calculated using the following formula: fasting glycemia (mmol/L) x fasting insulinemia (µIU/mL) / 22.5. The borderline of HOMA-IR was from 2.5 and it was taken from the basic research. Values above mentioned one was defined as insulin resistance.

The second indicator of insulin resistance was defined based on borderline values for insulin in 0 minute (I0 > 22.1 µIU/ml), 60 minute (I60 > 130 µIU/ml) and in 120 minute (I120 > 30 µIU/ml), that were given in Greenspan’s basic & clinical endocrinology. We will refer to this method in the text as “indirect assessment method of insulin resistance based on insulinemias during OGTT” (¨insulinemias during OGTT¨).

The glucose curve shape

Monophasic shape of the glucose curve is characterized by the glycemic peak between the 30th and the 120th minute, as well as the significant decrease in glycemia values from minimum 0.25 mmol/L between the 120th and the 180th minute upon starting OGTT. (G180 - G120 < - 0.25 mmol/l)v (Figure 1a).
Biphasic shape of glycemic curve is characterized by peak of glycemia in the 30th or the 60th minute, as well as the significant increase in glycemia values between the 120th and the 180th minute (G180 - G120 > 0.25 mmol/l). If the peak is reached in the 30th minute, one should have in mind the significant increase of glycemia between 60th and 180th minute (G180 - G60 > 0.25 mmol/l)8,15 (Figure 1b).

Triphasic shape curve is characterized by peaks in the 30th and 120th minute, as well as the negative peak in the 60th minute. The significant decrease in glycemia values between the 120th and the 180th minute criteria have to be fulfilled (G180 - G120 < - 0.25 mmol/l)8,15 (Figure 1c). The shape of the curve that is described as unclassified occurred when insignificant changes of glycemia values between the 120th and the 180th minute (< 0.25 mmol/l) were noticed. These patients were excluded from the study.

Statistical analysis

The database was created in Microsoft Office Excel. Data statistical analysis was done using SPSS software 20.0 (Statistical Package for the Social Sciences) for Windows (SPSS Inc., Chicago, IL, USA). For statistical data processing, methods of descriptive and analytical statistics have been used. Relative numbers and arithmetic meanings were used from descriptive statistical methods. To test the significance of the difference in arithmetic meanings, the t-test and ANOVA were used, while the hi-square test was used to test the significance of the frequency difference. In case the necessary condition for using the mentioned tests were not fulfilled, the appropriate nonparametric tests were applied: Kruskal-Wallis test and Mann-Whitney test.

Results

Study group was consisted of 417 patient suffering from polycystic ovary syndrome. Monophasic shape of glucose curve obtained through OGTT had 293 (70.26%), biphasic 56 (13.43%) and triphasic shape of glucose curve had 68 (16.31%) patients. By comparing the mean values of BMI in patients with monophasic (23.68 ± 5.09 kg/m²), biphasic (22.12 ± 3.55 kg/m²) and triphasic (22.41 ± 4.6 kg/m²) shape of glucose curve we find the statistically significant difference between these groups (p < 0.05). However, these correlations have shown no signs of clinical significance, due to the fact that the mean values of BMI in all three groups of patients belong to a group of normally nourished patients.
The frequency of insulin resistance based on HOMA-IR > 2.5 amounts to 66.19% (276 out of total 417 patients). The majority of women with insulin resistance had a monophasic shape of glucose curve. Elaborately, 198 patients with insulin resistance had a monophasic glucose curve shape, which represents 67.58% from a total number of patients with monophasic shape curve. Additionally, on the second place comes a triphasic shape of glucose curve, that is noticed in 41 patient (60.29% from a total number of patients with triphasic glucose curve shape). Finally, biphasic glucose curve shape was seen in 37 patients with insulin resistance (66.07% of patients with biphasic shape of glucose curve obtained during OGTT). There is no statistically significant difference in comparison between the frequency of insulin resistance and the shape of glucose curve (p > 0.05) (Figure 2a).

The frequency of insulin resistance according to insulinemia during OGTT amounts to 78.42% (327 out of total of 417 patients). The majority of patients with insulin resistance had a monophasic shape of glucose curve. Elaborately, 231 patients with insulin resistance, which represents 78.84% from a total of patients with monophasic shape of glucose curve. On the second places comes triphasic glucose curve shape, that was noticed in 60 patients (88.23% from a total number of patients with triphasic shape of glucose curve). Finally, biphasic shape of glucose curve was determined in 36 patients with insulin resistance (64.28% of patients with biphasic shape of glucose curve obtained during OGTT). There is a statistically significant difference noticed in the comparison between the frequency of insulin resistance and the shape of glucose curve (p = 0.005) (Figure 2b).

Regarding the time of the glycemic peak, from a total number of 293 patients with monophasic curve, 146 (49.83%) had a peak time in the 30th minute, 139 (47.44%) in the 60th minute and 8 (2.73 %) in the 120th minute (Figure 3a). When talking about patients with a biphasic curve, from a total number of 56, 44 patients (78.57%) had a peak time in the 30th minute, 11 (19.64%) had a peak in the 60th minute and 1 (1.79%) in the 180th minute (Figure 3b). As for patients with triphasic glycemic curve, from a total number of 68, 66 patients (97.06%) had a peak time of the 30th minute and 2 (2.94%) in the 120th minute (Figure 3c). There is no statistically significant difference in the frequency of insulin resistance compared to the glycemic time (p > 0.05). The same holds true for all criteria of insulin resistance (Figure 3a, 3b, 3c).

There is no statistically significant difference regarding the frequency of insulin resistance compared to the time of insulin peak, when it is defined according to HOMA-IR > 2.5 (p > 0.05) (Figure 4a).
There is statistically significant difference regarding the frequency of insulin resistance compared to the time of insulin peak, when it is defined according to insulinemias during OGTT \((p = 0.002)\) (Figure 4b).

When comparing the areas underneath the monophasic, biphasic and triphasic glucose curves \((\text{AUC}_{\text{glu}})\) no statistical significant was found \((p > 0.05)\). The same holds true for comparing the areas underneath the glucose curves \((\text{AUC}_{\text{glu}})\) of patients that were suffering from insulin resistance and the ones who weren’t (especially for HOMA-IR > 2.5 and according to insulinemias during OGTT) \((p > 0.05)\).

When comparing the areas underneath the insulinemia curve \((\text{AUC}_{\text{ins}})\) of patients with monophasic, biphasic and triphasic shapes of glucose curves no statistical significance were calculated \((p > 0.05)\). When compared the surface underneath the insulinemia curve \((\text{AUC}_{\text{ins}})\) of patients with insulin resistance and the ones without it and when insulin resistance was defined according to HOMA-IR > 2.5, no statistical significant difference was found \((p > 0.05)\). There is a statistically significant difference in the areas underneath the insulinemia curve \((\text{AUC}_{\text{ins}})\) in patients with insulin resistance and the ones without insulin resistance, when insulin resistance is defined according to insulinemias during OGTT \((p = 0.003)\).

Discussion

Oral glucose tolerance test with determining the level of insulinemias is used widely in clinical praxis, as the most useful method in assessing the presence of insulin resistance. It is mostly used, when patients are suffering from polycystic ovary syndrome. Based on the previously acquired data, simple and more practical methods for measuring insulin resistance have been developed. Among them stands homeostasis model assessment of insulin resistance \((\text{HOMA-IR})\), that was used in our current study.

Beside this parameter, we used in our investigation consolidated reference values for insulin in the 0\(^{\text{th}},\) 60\(^{\text{th}},\) 120\(^{\text{th}}\) minute of OGTT defined by Greenspan’s basic and clinical endocrinology, as indicator of insulin resistance\(^{14}\).

Due to the fact that there is no consistent method of interpretation OGTT and that there is no precise way of defining insulin resistance, we wanted to see if the glucose curve shape and the time of glucose peak could be a useful tool in detecting insulin resistance in patients suffering from polycystic ovary syndrome. As far as it is known, based on studying available literature, correlation between glucose curve shape and insulin resistance in women with PCOS is an original idea of this study and it is published in this article for the first time.
Previous research, that were engaged in this topic, has shown that there is an increased risk of the occurrence of prediabetes in adults with the following morphological characteristics of the glucose curve: the time of glycemic peak after the 30th minute, the glucose concentration in the 60th minute ≥ 8.6 mmol/l and monophasic shape curves9,16-18.

It has been observed that most people with normal glucose values and normal insulin sensitivity have peak glycemia in the 30th minute or earlier15,19,20, while on the other hand, the delayed glycemic time (≥60 minutes) is observed in adults who are suffering from type II diabetes mellitus19.

When talking about the time of the glycemic peak of the monophasic curve, an equal number of patients with insulin resistance shows an early peak in the 30th minute and a delayed peak at the 60th or the 120th minute.

Based on our results, total insulin response during OGTT correlates with insulinemias during OGTT, whereas HOMA-IR does not correlate. Clinical importance of these two data should be defined and requires further study.

In the study that was engaged in the reproducibility of morphological parameters of the glucose curve during OGTT, such are the time of the insulin peak, the time of glycemia peak, the shape of the curve, the glucose concentration in 1h after testing, the time of the glycemic peak proved to be the most reliable parameter21.

In general, it has been shown that people with biphasic glucose curves have lower BMI, better glucose tolerance, insulin sensitivity, and beta cell function, compared to those patients, that are characterized by the monophasic shape of the glucose curve8,10,11.

A more complicated glycemic and insulin response during 3h-OGTT (that involves a greater number of phases) is associated with better glucose tolerance, beta cell function and greater insulin sensitivity11.

In our study, the majority of patients are characterized by the monophasic shape of the glucose curve (70.26%), while the frequency of biphasic (13.43%) and triphasic curves (16.31%) is almost identical. Having in mind the results of previous studies that dealt with the shapes of glucose curve in the population of patients with normal glucose tolerance, as well as in the population of patients with impaired glucose tolerance (IGT) and diabetes mellitus, it was expected that the incidence of insulin resistance was the highest in the group of patients with monophasic glucose curve shape, while the more complex shapes of the curve (biphasic and triphasic in our case) should act protective, in the sense of improving the insulin sensitivity. This was not the case in our research. As already mentioned, most patients with PCOS have a
monophasic shape of glucose curve, but when the insulin resistance is defined by HOMA-IR, we notice approximately the same frequency. On the other hand, when the insulin resistance is defined by insulinemias during OGTT, the frequency of insulin resistance in the population of patients with triphasic shape of the glucose curve is as high as 88.23%.

Conclusion

According to results of the study, the most patients with PCOS have a monophasic shape of glucose curve. When we take frequency of insulin resistance in account, we notice approximately the same frequency in all types of curves, when it is defined by HOMA-IR. On the other hand, when insulin resistance is defined by insulinemias during OGTT, resistant patients with PCOS mostly have triphasic glucose curve shape. The time of glycemic peak is not related to the frequency of insulin resistance in patients with PCOS, under no criteria of insulin resistance.

References

Fig. 1 – The glucose curve shape: (a) Monophasic curve shape; (b) Biphasic curve shape; (c) Triphasic curve shape
Fig. 2 – The frequency of insulin resistance in the group of patients with monophasic, biphasic and triphasic glucose curve shape, when the insulin resistance is defined according to \(\text{HOMA-IR} > 2.5 \) (a) and according to insulinemias during OGTT (b); (-)IR patients without insulin resistance; (+)IR patients with insulin resistance.
Fig. 3 – The frequency of insulin resistance in patients with glycemic peak in the 30th, 60th, 120th, 180th minute, when insulin resistance is defined according to HOMA-IR > 2.5 and according to
insulinemias during OGTT; (-)IR patients without insulin resistance (+)IR patients with insulin resistance

Fig. 4 – The frequency of insulin resistance in group of patients with insulin peak in the 30th, 60th, 120th and 180th minute, when insulin resistance is defined according to HOMA-IR > 2.5 (a) and
according to insulinemias during OGTT (b); (-)IR patients without insulin resistance (+)IR patients with insulin resistance