ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article ADEQUACY OF BIOPSY SAMPLES FOR EGFR MOLECULAR TESTING IN LUNG ADENOCARCINOMA

ADEKvatnost bioptičkih uzoraka za molekularno testiranje EGFR u adenokarcinomu pluća

Authors Dragana Tegeltija*,†, Aleksandra Lovrenski*,†, Tijana Vasiljević‡, Bojana Andrejić-Višnjić‡, Vojnosanitetski pregled (2019); Online First September, 2019.

UDC:

DOI: https://doi.org/10.2298/VSP181225083T

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.

ADEQUACY OF BIOPSY SAMPLES FOR EGFR MOLECULAR TESTING IN LUNG ADENOCARCINOMA
ADEKVATNOST BIOPTIČKIH UZORAKA ZA MOLEKULARNO TESTIRANJE EGFR U ADENOKARCINOMU PLUĆA

Dragana Tegeltija*†, Aleksandra Lovrenski*†, Tijana Vasiljević†§, Bojana Andrejić-Višnjić‡
* Institute for Lung Diseases of Vojvodina, Sremska Kamenica, Serbia;
† University of Novi Sad, Faculty of Medicine, Department of Pathology; Novi Sad, Serbia;
§ Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
‡ University of Novi Sad, Faculty of Medicine, Department of Histology and Embryology; Novi Sad, Serbia;

Corresponding author:
Andrejić Višnjić Bojana, MD, PhD
Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad
e-mail: bojana.andrejic-visnjic@mf.uns.ac.rs
mobile: +381631669300
Abstract

Background/Aim. Adenocarcinoma of the lung is the most common histological type of lung cancer. The most reliable method in detecting EGFR mutations is real-time PCR. It is recommended to sample three to five biopsy samples with a minimum of 200-400 preserved tumor cells. We analyzed the suitability of biopsy samples for EGFR molecular testing in lung adenocarcinoma.

Methods. This retrospective analysis included 60 patients diagnosed with lung adenocarcinoma in the Institute for Pulmonary Diseases in Sremska Kamenica, during the period 2010-2015. Biopsy samples were obtained using transbronchial, bronchoscopic or catheter biopsy procedure. All cases included the identification of morphometric parameters, concentration of isolated DNA and EGFR mutations. The proportion of tumor in biopsy samples was assessed in histological sections using computer-aided morphometry.

Results. Biopsy samples were most commonly obtained by transbronchial biopsy (63%). In 35% of cases there were one and two biopsy samples. More than 10% of tumor cells were found in 68% of cases, while the majority of cases (33%) had between 200 and 500 of tumor cells and only 8% of cases had between 20 and 50 tumor cells. The average concentration of DNA in all analyzed samples was 5.81 ng/µl and was significantly lower in samples provided by catheter biopsy. Only two cases with mutations were detected, and there was no statistically significant difference between the concentrations of isolated DNA in wilde type and mutated EGFR adenocarcinoma. Invalid results were found in 10% of cases.

Conclusion. Biopsy samples are suitable for EGFR molecular testing in lung adenocarcinoma.

Key words: biopsy, lung, adenocarcinoma, EGFR mutation.

Apstrakt

Ključne reči: biopsija, pluća, adenokarcinom, EGFR mutacije.

Introduction

Lung carcinoma (LC) is the leading cause of morbidity and mortality of malignant diseases in the world. Approximately 80% of patients with LC have unresectable tumor at the time of diagnosis. A new approach in the treatment of patients with lung adenocarcinoma (ADC) and epidermal growth factor receptor (EGFR) mutations are associated with sensitivity to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. Surgical samples represent the gold standard for EGFR molecular testing, but formalin-fixed paraffin-embedded biopsy samples, cytological samples and blood plasma may be used for this testing. Material obtained by any of those methods is considered adequate for testing. The diagnostic accuracy and adequacy of the biopsy samples depends on its diagnostic modality and the diameter of the needles used. To date, there has been no consensus on the number of tumor cells (TC) necessary for EGFR molecular testing. According to Travis et al., the recommendation for EGFR testing is a minimum of 200 to 400 TC.
Polymerase Chain Reaction (PCR) is the most widely used and most reliable method for determining EGFR mutations since it requires a minimum amount of starting material and allows for the amplification of the desired DNA segment up to a billion times. The PCR method is carried out through three basic steps: denaturation of double-stranded DNA matrix, hybridization of specific oligonucleotides (primers) and DNA matrix and the extension (elongation) of primers that comprise a single PCR cycle repeated 20 to 45 times, where the desired DNA fragment is multiplied by a million to a billion times. After 40 repeated cycles, the efficiency of the reaction is lost and the “plateau phenomenon” occurs.

The aim of this research was to determine adequacy of the biopsy samples obtained by different biopsy procedures, for EGFR molecular testing in lung ADC.

Methods

Pathohistological analysis and formation of groups

60 cases of primary ADC of the lung diagnosed by biopsy samples were obtained from the records of the Institute for Pulmonary Diseases of Vojvodina during January 2010 to December 2015. Tissue was obtained during transbronchial biopsy (TBB), bronchoscopic biopsy (BB) or catheter biopsy (CB). The original diagnostic hematoxylin and eosin-stained sections were reviewed by two pathologists, independently.

The number of biopsy samples (tissue fragments obtained during biopsy procedure) and the number of TC in whole biopsy sample were recorded using the Olympus BX43 (Olympus, Tokyo, Japan) light microscope with magnification of 100X and 400X. All samples were classified into groups according the number of TC: group I (<20), group II (21-50), group III (51-100), group IV (101-200), group V (201-500), group VI (501-1000), group VII (>1000).

Computer-aided digital morphometry was used to determine the volume densities of tumor tissue (Tvd), non-tumor tissue volume density (NTvd), blood (Bvd) and necrosis (Nvd).

This was performed using “Olympus DP73” digital camera (Olympus, Tokyo, Japan) that was attached to an Olympus BX43 light microscope. Digital images of the biopsy sample were captured at high power using a 40X lens and then analyzed using “Image J” software with installed plugin for the analysis of the number of hits (COST and Analyze). Total biopsy sample, composed of non-tumor tissue (NT) and tumor tissue (T), was digitally
covered by predefined number of hits using the program mentioned above (Picture 1). Given that the volume density of the entire biopsy sample accounts for 100 %, based on the obtained data on the number of hits on entire biopsy (Bih), tumor tissue (Th), non-tumor tissue (NTh), blood (Bh) and necrosis (Nh), Tvd, NTvd, Bvd and Nvd in percentages were calculated using the proportions method (100% : Bih = Tvd : Th; 100% : Bih = NTvd : NTh; 100% : Bih = Bvd : Bh; 100% : Bih = Nvd : Nh).

Real time PCR (rtPCR) analysis

Molecular analysis of the EGFR mutation (exon 18-21) was done prospectively for all cases with the cobas EGFR Mutation Test (Roche, Basel, Switzerland) rtPCR. The cobas Sample Preparation Kit (Roche, Basel, Switzerland) was used for the sample preparation and DNA extraction. Automatic amplification and detection were done on the cobas z 480 Analyzer (Roche, Basel, Switzerland).

Statistical methods

Assessment of correlations and comparisons between of the mean values of numerically expressed data groups was performed using t-test and variance analysis methods (ANOVA).

Statistical analysis was performed using SPSS 12.0 software.

Results

The general characteristics of the patients are shown in Table 1. The median number biopsy sample verified microscopically was two, with minimum 1 and maximum 7 samples per slide. More than a half of samples contained one or two biopsy samples. The cases with three, four and seven samples were rare (20%, 2% and 2%) and four among sixty analyzed cases could not be classified.

Considering the number of TC, the majority of cases were classified into Group V (33%) and the minority in Group I (0%) and II (8%) (Table 2).

Analyzing the biopsy samples, median value of the Tvd was 24.88%, and there was no statistically significant difference in comparing the Tvd according to type of biopsy procedure (TBB, BB, CB) that was performed (p=0.360). What is perhaps even more significant, is a statistically significant difference in number of TC among samples obtained during different biopsy procedure when we compared samples with small Tvd (less than 10%) (p<0.001). In those samples with low Tvd, biopsy samples obtained during CB had the significantly lower number of TC. Necrosis was recorded in two cases, with Nvd of...
20% and 40%, but valid EGFR molecular testing results were obtained. Blood was found in 20 out of 60 cases, and Bvd ranged from 2.25% - 90.72%. In two of the cases containing blood (with Bvd values 11.7 and 71.7) results of molecular testing were invalid, even after retesting. Six cases (10%) of all analyzed, were invalid even after retesting. The average concentration of DNA was 5.81 ng/µl (range 0.38-19.2) and was significantly lower in samples provided by CB.

EGFR mutations were detected in two cases, both women, one of which was a non-smoker. The tissue in EGFR muted ADC cases was obtained by TBB, and according to number of TC, samples were group III. Tvd of one of the mutated cases was 11.59%, and the other had Tvd <10%. One case had blood (Bvd=32%), while necrosis was absent in both cases. There was no statistically significant difference in comparing the concentration of DNA in wt and EGFR mutated ADC (p=0.641). In cases with mutations detected, an average concentration of DNA was 4.53 ng/µl.

Discussion

ADC has been the most common histological type of LC in the last few decades, more frequent in the men. This fact was also confirmed by the results of our research, in which the ratio of affected men and women was 1.4:1, and the average age of patients was 61.8±8.08. Smoking is one of the most important risk factors for the development of LC. The high percentage of active smokers in our research is most likely the consequence of poor socio-economic status, advocating bad lifestyles and bad effects of smoking ban campaigns.

Bronchoscopy is safe and well tolerated by the patients and has become the mainstay investigation in the evaluation of patients with LC and may be used for molecular biologic analyses to help select therapy and provide prognostic information. The sensitivity and specificity of the biopsy samples depends on the location and distribution of the tumor and the number of samples obtained during biopsy procedure. The amount of tumor tissue obtained by biopsy is small, since the obtained tissue contain both tumor and non-tumor cells. Also, the amount of tumor tissue depends on the histological type of the tumor and endoscopic findings. The presence of necrosis or the presence of crush artefact (even in visible endobronchial disease) may cause the failure in achieving the histological diagnosis. In these circumstances, combination of different cytological and histological procedures provides the optimum diagnostic yield. The number of biopsy samples in published papers
differs, although it is recommended to take 3 to 5 samples25,31,32. Bronchoscopy has been implemented on IPBV since 1960. In this research, we recorded an average of two biopsy samples (range 1-7) during one procedure, which is a significantly lower number in comparison to the results published.

The majority of biopsy samples contained more than 100 TC25. Similar to the above results, more than half of the biopsy samples included in our research had more than 100 TC. There are various methods for the morphometric analysis of biopsy samples. In the analysis of 120 cases, Scarpino used digitized slides where the following items were determined manually: biopsy area, tumor area, TC number and the total number of cells in the biopsy, followed by determining the percentage of tumor tissue and percentage of TC33.

In this research, Tvd was determined using the Image J computer program with installed plugins for the analysis of the number of hits (COST and Analyze). Tvd depends on the type of the tested sample and the manner in which the samples were obtained. The average Tvd value in our research was 24.88%. After comparing Tvd among samples obtained with different types of biopsy procedure, using the variance analysis (ANOVA) method, the obtained difference was not statistically significant (p=0.36). A significant number of biopsy samples (32\%) in our research had Tvd less than 10\%, which is contrary to the results of Zu (4.7\%)25.

The concentration of isolated DNA does not differ among patients with wt EGFR and mutated EGFR ADC33,34. This view was confirmed by the results of our research (p=0.641). In a study by Scarpino et al., there was no statistically significant difference observed among samples obtained by transthoracic puncture and biopsy (8.0 ng/µl vs 9.2 ng/µl)33. Contrary to these results, we have found that the concentration of isolated DNA depends on the type of biopsy procedure and that there is a statistically significant difference between samples obtained by BB and CB (p=0.055).

The number of biopsies with insufficient amount of DNA for molecular EGFR testing depends on the quality of the material analyzed. Khode identified an insufficient amount of extracted DNA in 6 of 56 (11\%) cases, and recommended resampling35. Although blood and necrosis may be the limiting factors for molecular EGFR testing, they were not the exclusion factors in our research, and the percentage of invalid results of 10\% was in line with the results of the previous study. The necrosis was recorded in only 2 cases. Blood was present in 20 cases, but only 2 of them had invalid results, even after retesting. The
presence of these factors was not considered an absolute limiting factor for exclusion from EGFR testing.

In the detection of mutations, biopsy and cytological samples are used equally with surgical samples, thus eliminating the need for invasive diagnostic procedures34. EGFR mutations can also be demonstrated in biopsy samples with a small number of TC36. This view was confirmed by the results obtained by Krawczyk et al. They detected a similar percentage of EGFR mutations in the biopsy samples with < 20% TC and ≥ 20% TC (8.1% vs 9.2%)34. Contrary to these results, Scarpino recorded a smaller percentage of EGFR mutations in biopsy samples with < 20% TC as compared to samples with ≥ 20% of TC (19% vs 25%; \(p>0.05\))33. If the comparison limit is 50% TC, the difference is statistically significant24. Both cases with EGFR mutated ADC in our research had less than 20% TC, which contributed to the understanding that EGFR mutation can also be determined in biopsy samples with a small number of TC.

In the first major study on EGFR mutation status of patients from Serbia, EGFR mutations were detected in 42/360 (11.7%) patients with lung ADC37. Contrary to these results, we detected EGFR mutations in a significantly smaller percentage (2/60; 3.3%). Deletions in exon 19 are most often detected by applying the Cobas® EGFR Mutation Test35,37. We did not detect this type of mutation, and the results of our research are most likely the consequence of a smaller number of patients involved in the research, as well as a smaller percentage of EGFR mutated lung ADC.

Based on our data presented here, we think that BB is suitable for EGFR molecular testing in lung ADC.

References

1. Adler I. Primary malignant growths of the lungs and bronchi. 1st ed. New York: Longmans, Green and Co; 1912.

Picture 1. Morphometric analysis of biopsy sample (with ADC tumor tissue and non tumor tissue) using Image J program (blue- TC; green non-TC; X40)
Table 1. Characteristics of patients.

<table>
<thead>
<tr>
<th>Number of patients - n(%)</th>
<th>60 (100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender - n(%)</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>35 (58)</td>
</tr>
<tr>
<td>Women</td>
<td>25 (42)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>61.8±8.08</td>
</tr>
<tr>
<td>Range</td>
<td>43-79</td>
</tr>
<tr>
<td>Smoking status - n(%)</td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td>6 (10)</td>
</tr>
<tr>
<td>Former smoker</td>
<td>10 (17)</td>
</tr>
<tr>
<td>Smoker</td>
<td>44 (73)</td>
</tr>
</tbody>
</table>

Table 2. Data on type of biopsy performed, and number of tumor cells in one sample.

<table>
<thead>
<tr>
<th>Type of biopsy</th>
<th>Number of cases (%)</th>
<th>Tvd</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBB</td>
<td>38 (63)</td>
<td>21.63%</td>
</tr>
<tr>
<td>BB</td>
<td>10 (17)</td>
<td>31.22%</td>
</tr>
<tr>
<td>KB</td>
<td>12 (20)</td>
<td>21.08%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number TC</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I (< 20)</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>II (21-50)</td>
<td>5 (8)</td>
<td>6.64%</td>
</tr>
<tr>
<td>III (51-100)</td>
<td>10 (17)</td>
<td>10.95%</td>
</tr>
<tr>
<td>IV (101-200)</td>
<td>12 (20)</td>
<td>10.87%</td>
</tr>
<tr>
<td>V (201-500)</td>
<td>20 (33)</td>
<td>31.63%</td>
</tr>
<tr>
<td>VI (501-1000)</td>
<td>13 (22)</td>
<td>37.70%</td>
</tr>
<tr>
<td>VII (> 1000)</td>
<td>0 (0)</td>
<td>0</td>
</tr>
</tbody>
</table>

Legend: TBB- transbronchial biopsy, BB- bronchobiopsy, KB – catheter biopsy, TC – tumor cells
Received on December 25, 2018.
Accepted August 19, 2019.
Online First September, 2019.

.