ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article CEPHALOMETRIC EVALUATION OF SKELETAL RELATIONSHIPS AFTER BIMAXILLARY SURGICAL CORRECTION OF MANDIBULAR PROGNATHISM

RENTGEN KRANIOMETRIJSKA EVALUACIJA SKELETNIH ODNOSA NAKON BIMAKSILARNE HIRURŠKE KOREKCIJE MANDIBULARNOG PROGNATIZMA

Authors Vladimir Sinobad*†‡, Ljiljana Strajnić§, Tamara Sinobad¶, Vojnosanitetski pregled (2019); Online First May, 2019.

UDC:

DOI: https://doi.org/10.2298/VSP180906058S

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
CEPHALOMETRIC EVALUATION OF SKELETAL RELATIONSHIPS AFTER BIMAXILLARY SURGICAL CORRECTION OF MANDIBULAR PROGNATHISM

RENTGEN KRANIOMETRIJSKA EVALUACIJA SKELETNIH ODNOSA NAKON BIMAKSILARNE HIRURŠKE KOREKCIJE MANDIBULARNOG PROGNATIZMA

Autors
Vladimir Sinobad*†‡, Ljiljana Strajnić§, Tamara Sinobad¶

* University of Belgrade, †Faculty of Dental Medicine, ‡Clinic for Maxillofacial Surgery, Belgrade, Serbia
§ Clinic for Dentistry of Vojvodina, Novi Sad, Serbia
¶ Zepter Dental Policlinic, Belgrade, Serbia

Correspondence to:
Vladimir Sinobad*†‡
* University of Belgrade, †Faculty of Dental Medicine,
‡Clinic for Maxillofacial Surgery, Belgrade, Serbia
Dr Subotića 4
11000 Beograd
vladimir.sinobad@stomf.bg.ac.rs

Short title: Cephalometric evaluation after bimaxillary surgical correction
Kratak naslov: Rendgenkraniometrijska analiza nakon bimaksilarne hirurške korekcije
Abstract

Background / Aim. In the recent years bimaxillary surgery has widely been accepted as an effective surgical procedure for correction of mandibular prognathism. The aim of this research was to determine how bimaxillary surgical correction change the skeletal dimensions and relations typical of mandibular prognathism and if the postoperative results can be compared with biometric values of these dimensions in subjects with normo-occlusion. **Methods.** The study included 50 subjects divided into two groups. The analyzed group consisted of 20 patients with mandibular prognathism, mean age 19.8±5.3 yr. The control group consisted of 30 subjects with skeletal class I and normo-occlusion, mean age 21.5±3.5yr. Cephalometric studies were conducted on 70 lateral cephalograms made in subjects of the analyzed group before and after surgery and in controls. All radiographs were transformed into a digital form. Using the computer program "Dr. Ceph", on each radiograph 30 linear and angular skeletal variables were analyzed and compared. The values of examined variables in the analyzed group were compared before and after surgery and with the values of the same variables in the control group. **Results.** Bimaxillary osteotomies changed most of variables that characterize the mandibular prognathism. Changes in the sagittal plane are reflected in a significant increase of angles SNA (by 4° on the average), ANB (6°), and a significant reduction in angles SNB (3°), ArGoMe (8°), NGoMe (6.2°), Bjorks sum (7°) and the angle of skeletal convexity NAPg (2°). Changes in vertical relationships are reflected in a significant reduction in overall anterior face height N-Me (by 5mm on the average), the lower anterior face height ANS-Me(4mm), in a significant increase in the total posterior face height S-Go (2.5-3mm), lower posterior face height PNS-Go(4mm), in a significant reduction of the basal angle PP/MP (5°) and angle that mandibular plane closes with the anterior cranial base NS/MP(4°). Comparison of investigated variables in the analyzed group after surgery with the same values in the control group shows that they are significantly closer to biometric standards. **Conclusion.** Bimaxillary surgery alters significantly the skeletal relationships and facial dimensions typical of mandibular prognathism and normalizes the skeletal profile and appearance in operated patients.
Key words: mandibular prognathism, bimaxillary surgery, cephalometry.

Apstrakt

Uvod / Cilj. Posljednjih godina bimaksilarna hirurgija je široko prihvaćena kao efikasna hirurška procedura u korigovanju mandibularnog prognatizma. Cilj ove studije bio je utvrditi na koji način bimaksilane hirurške korekcije menjaju skeletne dimenzije i odnose tipične za mandibularni prognatizam i da li se postoperativni rezultati mogu porediti sa biometrijskim vrednostima tih dimenzija kod osoba sa normookluzijom. Metode. U studiju je uključeno 50 ispitanika koji su podeljeni u dvogrupe. Analiziranu grupu je činilo 20 pacijenata sa mandibularnim prognatizmom prosečne starosti 19,8±5,3 god. Kontrolnu grupu je činilo 30 ispitanika sa I skeletnom klasom i normookluzijom prosečne starosti 21,5±3,5 god. Rendgenkraniiometrijska istraživanja su obavljena na 70 profilnih telerendgenskih snimaka glave načinjenih kod ispitanika analizirane grupe pre i nakon operacije i kod ispitanika kontrolne grupe. Pomoću kompjuterskog programa "Dr Ceph" na svakom snimku vrednovano je 30 linearnih i ugaonih skeletnih varijabli. Vrednosti ispitivanih varijabli u analiziranoj grupi su upoređene pre i nakon operacije i sa vrednostima istih varijabli u kontrolnoj grupi. Rezultati. Bimaksilane osteotomije su promenile većinu varijabli koje karakterišu mandibularni progatizam. Promene u sagitalnim odnosima ogledaju se u značajnom povećanju uglova SNA (za 4º), ANB (za 6º) i značajnom smanjenju uglova SNB, ArGoMe, NGoMe, Bjorkovog poligona i ugla skeletnog konveksiteta lica NAPg. Promene u vertikalnim odnosima ogledaju se u značajnom smanjenju ukupne prednje visine lica N-Me (za 5mm), donje prednje visine lica ANS-Me (za 4mm), značajnom povećanju ukupne zadnje visine lica S-Go (oko 3mm) donje visine lica PNS-Go (4mm), značajnom smanjenju bazalnog ugla SpP/MP (5º) i ugla koji mandibularna ravan zaklapa sa prednjom kranijalnom bazom NS/MP (4º). Poređenje vrednosti ispitivanih varijabli u analiziranoj grupi nakon operacije sa istim vrednostima u kontrolnoj grupi pokazuje da su se one značajno približile biometrijskim standardima. Zaključak. Bimaksilane osteotomije značajno menjaju skeletne odnose i dimenzije lica tipične za mandibularni progatizam i normalizuju skeletni profil kod operisanih pacijenata.
Introduction

Mandibular prognathism is among the most serious, genetic disorders of growth and development of the craniofacial skeleton. Deformity is manifested fully in the most sensitive age, the adolescent period, endangering the basic functions of the orofacial system, the appearance of the young persons, their psychological health and quality of life. These are usually the basic motives why these patients seek the orthognathic surgery. Literature data indicate that severe forms of dentofacial deformities occur in 0.5% of people in the general population. The fact is, however, that of all patients requiring orthognathic surgery, 28-34% are those with mandibular prognathism.\(^1\)

Diagnosis and treatment of severe craniofacial disharmonies require a multidisciplinary approach and a team work. The base of each treatment is a detailed analysis of the orofacial complex that provides objective information on the severity and phenotypic characteristics of the existing deformity. In the majority of cases class III deformities are combined by maxillary retrognathia, mandibular prognathism and varying degrees of vertical dyscrepances.\(^2,3,4\)

During past decades various surgical procedures have been advocated for correction of these deformities. Until the 80s of the last century, the surgical correction of mandibular prognathism has been mainly performed by isolated operations on the mandible.\(^5,6,7,8\) Nowadays, it is clear, that such operations, in most cases, cannot normalize the skeletal relationships and achieve the optimal aesthetic results.\(^9,10,11,12\) Clinical experience and numerous scientific references suggest that correction of skeletal disharmonies, harmonization of occlusion and correction of facial appearance in patients with severe mandibular prognathism can only be achieved by bimaxillary surgery, which means by planned surgical reposition of both jaws.\(^11,12,13,14,15,16\)

The aim of this study was to determine to what extent and in what way bimaxillary surgical correction change the skeletal dimensions and relations typical of mandibular
prognathism and if the postoperative results can be compared with biometric values of these dimensions in subjects with normo-occlusion.

Methods

The sample of the present study comprised two groups, analyzed group and control group. **The analyzed group** consisted of 20 patients who were admitted at the Department of maxillofacial surgery, School of dental medicine in Belgrade for surgical correction of mandibular prognathism in the period from 2003-2013 year. Ten patients were females and ten males of 19.8±5.3 mean age. **The control group** consisted of 30 young persons of 21.5±3.5 mean age with normo-occlusion. For the purposes of cephalometric research a total of 70 lateral cephalometric radiographs were made and divided into three groups:

- **Group A** consisted of 20 lateral cephalometric radiographs derived from the patients of the analyzed group before surgery and before orthodontic preparation.
- **Group B** consisted of 20 lateral cephalometric radiographs derived from the same patients of the analyzed group 6 months to a year after bimaxillary surgical correction of mandibular prognathism.
- **Group C** consisted of 30 lateral cephalometric radiographs made in control group. This collection was selected from the files of our dental school (archive of the author).

Lateral cephalograms are made in the Plan-Meca radiological center and the Center for the head and neck radiology at the School of dental medicine in Belgrade with a special apparatus „ORTOCEPH“ (Siemens, Bensheim, Germany). The recordings were made by standard techniques at a voltage of 65 to 80 kV and strength of 20mA, and the exposure was from 1 to 1.5 sec. Recording was performed on the X-ray film 18×24cm. All radiographs were scanned and transformed into digital form.

The choice of operative technique

Each patient of the analyzed group was subjected to special consultative review and selected for the purpose of these investigation on the basis of precise analysis of the phenotypic characteristics of present deformity. The patients were sent to orthodontic preparation for a period of one and a half year, and then subjected to surgical correction. The surgical procedure was performed by a successive bimaxillary approach that involves
LeFort I osteotomy of the maxilla and bilateral sagittal split ramus osteotomy of the mandible. The rigid fixation (mini titanium plates and screws) was used to fix the bone fragments. A combination of solid and elastic intermaxillary immobilization was applied for a period of 6-8 weeks after surgery.9,17,18

Cephalometric research

All lateral cephalograms made in the analyzed group before and after surgery, as well as in the control group were subjected to cephalometric analysis. For this purpose, a special computer programme "Dr. Ceph" (FYI Technologies, GA, USA, last revised edition, version 9.7) was used (Fig.1). This version allows the use of over thirty well-known cephalometric analysis, as well as adaptation of any analysis to the specific needs of research. Using this programme, on each cephalogram of the groups A, B and C, the values of 30 linear and angular skeletal variables were recorded and evaluated.

Examined skeletal variables:

a) Examined linear variables (Fig. 2):
1. N-Se - length of the anterior cranial base
2. N-Me - total anterior face height
3. N-ANS - upper anterior face height
4. ANS-Me - lower anterior face height
5. S-Go - total posterior face height
6. S-PNS - upper posterior face height
7. PNS-Go - lower posterior face height
8. S-Ar - length of the posterior cranial base
9. Ar-Go - length of the ramus
10. Co-Go - height of the ramus
11. PNS-A - length of maxillary body
12. Go-Me - length of the mandibular body

b) Examined proportion of linear variables:
1. S-Go/N-Me - relationship of anterior and posterior face heights
2. N-ANS/ANS-Me - ratio of upper and lower anterior face height
3. N-ANS/N-Me - ratio of the upper anterior face height to total anterior face height
4. ANS-Me/N-Me - ratio of the lower anterior face height to total anterior face height

c) Examined angular skeletal variables (Fig. 3):
1. SNA - anteroposterior position of the maxilla relative to the anterior cranial base
2. SNB - anteroposterior position of the mandible relative to the anterior cranial base
3. ANB - relationship of the maxilla and mandible in the sagittal plane
4. N-S/PP - inclination of the maxilla to the anterior cranial base
5. N-S/MP - inclination of the mandible to the anterior cranial base
6. FH/MP - relationship between the Frankfurt plane and mandibular plane
7. PP/MP - relationship between the basic jaw planes
8. ArGoMe - gonial angle by Bjork
9. ArGoN - upper part of the gonial angle
10. NGoMe - lower part of the gonial angle
11. NSAr - angle of the saddle by Bjork
12. SArGo - articular angle by Bjork
13. Bjork's sum - sum of the angles NSAr, SArGo and ArGoMe
14. NAPg - angle of facial skeletal convexity

Numerical values of the examined skeletal variables were subjected to statistical analysis and compared. To verify the changes in skeletal relationships due to surgical correction, the values of selected skeletal variables were compared before and 6 months to a year after surgery.

The comparison of investigated variables between the analyzed group after surgery and the control group was used for the objective evaluation of the success of bimaxillary surgery in correcting the mandibular prognathism.

Statistical analysis was performed using the computer programs MS Excel, MedCalc (MedCalc ver.11.4 Software, Belgium) and SPSS ver.18 (SPSS Inc, Chicago, IL). The comparison of two groups of independent data was performed using the Student t-test. Comparison of three sets of data was performed using the parametric analysis of variance.
(ANOVA) with Tukey-Snedecor post-hoc test. The shape of data distribution was examined using the Kolmogorov-Smirnov test. This test showed that all variables had a normal distribution, and in the further course of data processing they were portrayed as means, standard deviations, minimum and maximum values and coefficients of variation (in%). The minimum requirement for a statistically significant difference was when the probability (p, significance level) was less than or equal to 0.05.

Results

Comparison of values of linear skeletal variables in the analyzed group before and after surgery revealed a number of changes in their values. However, only following variables: N-Me, ANS-Me, Go-Me, PNS-A, S-Go, PNS-Go, S-Ar, S-Go/N-Me showed significant differences between the situation before and after operation (Tab.1).

After surgery, the total anterior face height N-Me was reduced by 5mm on the average, the lower anterior face height ANS-Me by 4mm on the average and the length of the mandible Go-Me for 3-3.5mm. On the contrary, the values of the total posterior face height S-Go increased by 2.5-3mm on the average, and of the lower face height PNS-Go by 4mm. The relationship between the posterior and anterior total face height changed in favor of the posterior face height. The effective maxillary length increased by 3-3.5mm on the average as a result of its shift forward during surgery.

The surgery did not affect the length of the anterior cranial base N-S, and the values of the anterior upper face height N-ANS, posterior upper face height S-PNS, length of ramus Ar-Go and height of ramus mandible Co-Go.

Relations between the upper and lower anterior face height N-ANS/ANS-Me, between the upper anterior face height and total anterior face height N-ANS/N-Me, and the relationship of the lower anterior face height to the total height of the face ANS-Me/N-Me were changed after the operation, but the differences were not significant.

Comparison of linear skeletal variables in the analyzed group after surgery with the values of the same variables in the control group revealed that most linear variables after surgery returned to the level in controls (Tab.1). This especially applies to the values of total anterior face height N-Me and the lower anterior face height ANS-Me which were significantly reduced by surgery, then to the values of the total posterior face height S-Go,
the lower posterior face height PNS-Go and their relationship, which significantly increased after surgery.

However, even after surgery, the posterior cranial base S-Ar, still remains considerably lower than in the control group while the length and height of the ramus and even the length of the body of the mandible are significantly longer compared to their values in the control group.

Comparison of values of angular skeletal variables in the analyzed group before and after surgery revealed statistically significant differences in the following variables: SNA, SNB, ANB, NS/MP, FH/MP, PP/MP, ArGoMe, NGoMe, Bjork's sum, and NAPg (Tab. 2).

Due to maxillary advancement during Le Fort I osteotomy, the value of SNA angle increased to 4° on the average. On the contrary, the values of the basic features of mandibular prognathism decreased significantly. The values of SNB angle decreased by an average of 3°, NS/MP angle by an average of 4°, FH/MP angle by an average of 4.7°, PP/MP angle by an average of 5°, ArGoMe angle by an average of 8°, NGoMe by an average of 6.2° and Bjork's sum by an average of 7°.

The ANB angle with a high negative value before surgery (X=-4.7±3.04°), after surgery became positive (X=1.3±1.22°) and significantly approached to biometric standards (around ± 2°). The difference between the values of ANB angle before and after operation amounts 6°.

Comparison of angular skeletal variables in the analyzed group after surgery with the values of the same variables in the control group showed that majority of them approached to the biometric norms (Tab. 2.). This is especially true for angles SNA, SNB, NS/PP, NS/MP, FH/MP, PP/MP, ArGoN and Bjork's sum. As the modified values of these angles are the main indicators of maxillary retrognathia and/or mandibular prognathism with vertical type of growth, normalization of their values after surgery changed the progeny skeletal assembly in operated patients.

However, even after surgery in the analyzed group the values of gonial angles ArGoMe and NGoMe and the angle of facial skeletal convexity NAPg remained significantly higher compared to their values in the control group, while the average value of the articular angle SarGo was significantly lower. The value of the ANB angle which significantly increased after surgery (by 6° on the average), is still different from its value in the control group.
Discussion

The main objectives of surgical treatment in patients with mandibular prognathism are to normalize the facial profile, to harmonise the occlusion and to rehabilitate the basic functions of the orofacial system. Correction of the main skeletal parameters to within the normal range of values is usually regarded as a main aim of treatment.

The choice of surgical technique is certainly one of the key factors for successful realization of these objectives. Having in mind the extreme variability of the craniofacial morphology in patients with mandibular prognathism, it is clear that modality of surgical treatment must be appropriate to basic phenotypic characteristics of the present deformity.

Modality of surgical treatment in this study was determined after a detailed clinical and cephalometric analysis in each subject. In all subjects of the analyzed group the Le Fort I maxillary advancement associated with mandibular set back osteotomy according to Obwegeser and Dal Pont was performed.

Evaluation of certain skeletal variables in the experimental group before surgery revealed that 40% of subjects had significantly decreased SNA angle in relation to biometric standards, that maxillary length was decreased in 55% of subjects. In 85% of subjects the relationship of the mandible to the anterior cranial base (NS/MP angle) was typical of mandibular prognathism associated with vertical dyscrepances. The average value of ANB angle in the analyzed group before the operation amounted to \(-4.7\pm3.04^\circ\). In 75% of subjects in the analyzed group deformity was a combination of maxillary retrognathia and mandibular prognathism.

Comparative analysis of selected skeletal variables in the analyzed group 6 months - one year after surgery with the values of the same variables before surgery showed that bimaxillary operations changed more linear and angular dimensions characteristic for mandibular prognathism. This operative procedure altered significantly the position of the maxilla and mandible in the sagittal plane and vertically, the length of the mandible and its relation to the anterior cranial base. The total anterior and lower anterior face height were reduced by 5mm on the average. The specificity of this operation is a significant increase of total posterior and lower posterior face height (by 3-4mm on the average) and the length
of the posterior cranial base S-Ar. This alteration normalized the relationship between the anterior and posterior face heights and led to harmonization of facial dimensions in operated patients. These results are consistent with the results of numerous studies which indicate the significant harmonization of facial dimensions after bimaxillary operations.11,12,13,14,15,16,19,20

The significant increase of posterior face height in operated patients, especially the increase of lower posterior face height and posterior cranial base is a result of anterior rotation of the proximal segment of the mandible during the bilateral ramus osteotomy, which is necessary in order to establish normal occlusal relationships.

Introduction of Le Fort I osteotomy in the operative procedure changed significantly the values of SNA, SNB, ANB angles and the angle of skeletal convexity NAPg. In that manner bimaxillary surgery altered significantly the typical imbalance in anterio-posterior skeletal relationships in patients with mandibular prognathism. After operation the SNA angle increased by 4º on the average, which is specificity of bimaxillary surgical correction of mandibular prognathism. SNB angle after surgery was reduced on the average of slightly more than 2º, but is still higher than the biometric standard. The values of ANB angle in the analyzed group after operation increased by 6º on the average, but they are still below optimum. Johnston (2006) also stated that values of SNA, SNB and ANB angles after bimaxillary surgery showed significant improvement, but in 54% of treated patients ANB angle values are still below the ideal, while 52% of patients still have great values of SNB angle.19

Bimaxillary surgery reduced also the most vertical components of mandibular prognathism. Significant reduction of NS/MP, FH/MP, ArGoMe, ArGoN angles and Bjork’s sum normalized the positions of maxilla and mandible to the anterior cranial base and the mutual relation of the jaws vertically, which is confirmed by other studies.14,15,16,19,20

According to the literature the efficiency of an operation has been expressed in the percentage of patients who have certain cephalometric dimensions brought into the framework of ideal or acceptable norms.19 In the context of this study, the efficacy of bimaxillary surgery has been evaluated by comparing the tested skeletal parameters in the analyzed group after surgery with the values of these parameters in the control group.
These analyses revealed that values of most examined variables after surgery were significantly closer to their values in subjects of the control group. This is especially true for the values of the total anterior and posterior face heights, and the angles SNA, NS/PP, NS/MP, FH/MP, PP/MP, ArGoN and Bjork's sum. These changes altered significantly the tipical skeletal assembly of mandibular prognathism and contributed to the overall fisiognomic effect in operated patients. Similar results were reported by Johnston et al. (2006), Marsan et al. (2009), Jacobson et al. (2011), Al Gunaid et al. (2012) and Aydemir et al. (2015).\(^{14,15,16,19,20}\)

However, the operation did not remove all skeletal features of prognatism. The lengths of anterior and posterior cranial bases, the length of the ramus and to some extent the length of the mandibular body after surgery are characteristic of mandibular prognathism. The values of the angles SNB, ANB, ArGoMe, NGoMe and NS/MP even after surgery differ from their values in the control group. These findings are consistent with the results of Johnston et al. (2006), Al Gunaid et al. (2012), Sinobad (2019) who also found that surgical treatment did not lead to the full normalization of these skeletal dimensions.\(^{9,14,19}\)

Conclusion

1. Investigation in this study have confirmed that bimaxillary surgery significantly altered the large number of linear and angular dimensions that characterize mandibular prognathism. They normalized the overall anterior and posterior face heights in operated patients and their relationships.

2. The maxillary advancement accompanied by mandibular set back osteotomy altered significantly the sagittal jaw relationship and normalized the overall skeletal facial convexity.

3. The results of this study confirmed the reduction of most vertical components of mandibular prognathism. Reducing the angular values NS/MP, FH/MP, ArGoMe, ArGoN and Bjork's sum normalized the positions of maxilla and mandible to the anterior cranial base and the mutual relation of the jaws vertically.

4. After bimaxillary operations, the values of most linear and angular skeletal variables were significantly closer to, or even completely identical with the values of these variables in patients with normo-occlusion.
REFERENCES

Table 1
The values of linear skeletal variables in the control group and in the experimental group before and after surgery

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control group</th>
<th>Exp. group before operation</th>
<th>Exp. group after operation</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Se</td>
<td>63.7±6.37</td>
<td>66.8±4.75*</td>
<td>66.8±4.5*</td>
<td><0.05</td>
</tr>
<tr>
<td>N-Me</td>
<td>114.9±8.57</td>
<td>124.0±6.89***</td>
<td>118.9±7.83§§</td>
<td><0.001</td>
</tr>
<tr>
<td>N-ANS</td>
<td>50.3±4.62</td>
<td>53.0±3.21*</td>
<td>52.1±5.11</td>
<td><0.05</td>
</tr>
<tr>
<td>ANS-Me</td>
<td>64.5±5.79</td>
<td>71.0±6.45***</td>
<td>66.7±6.49§</td>
<td><0.001</td>
</tr>
<tr>
<td>S-Go</td>
<td>78.5±5.91</td>
<td>76.6±5.20</td>
<td>79.3±7.10§</td>
<td><0.05</td>
</tr>
<tr>
<td>S-PNS</td>
<td>44.0±3.42</td>
<td>44.9±3.72</td>
<td>44.7±4.06</td>
<td>ns</td>
</tr>
<tr>
<td>PNS-Go</td>
<td>44.4±4.15</td>
<td>38.9±4.48***</td>
<td>42.8±5.87§§</td>
<td><0.001</td>
</tr>
<tr>
<td>S- Ar</td>
<td>36.1±3.68</td>
<td>30.4±5.59***</td>
<td>31.2±5.07***,§§</td>
<td><0.001</td>
</tr>
<tr>
<td>Ar-Go</td>
<td>46.5±4.76</td>
<td>52.8±6.49***</td>
<td>52.9±5.24***</td>
<td><0.001</td>
</tr>
<tr>
<td>Co- Go</td>
<td>57.9±5.03</td>
<td>61.8±4.51**</td>
<td>62.0±5.91”</td>
<td><0.001</td>
</tr>
<tr>
<td>S-Go/ N-Me</td>
<td>0.685±0.0436</td>
<td>0.627±0.05***</td>
<td>0.660±0.06§§</td>
<td><0.001</td>
</tr>
<tr>
<td>N-ANS/ANS</td>
<td>0.779±0.0710</td>
<td>0.756±0.10</td>
<td>0.773±0.10</td>
<td>ns</td>
</tr>
<tr>
<td>N-ANS/N-M</td>
<td>0.438±0.0256</td>
<td>0.430±0.03</td>
<td>0.436±0.03</td>
<td>ns</td>
</tr>
<tr>
<td>ANS-Me/ N-1</td>
<td>0.562±0.0256</td>
<td>0.571±0.03</td>
<td>0.564±0.03</td>
<td>ns</td>
</tr>
<tr>
<td>PNS-A</td>
<td>44.5±3.43</td>
<td>43.6±3.56</td>
<td>46.7±3.95aaa,b</td>
<td>ns</td>
</tr>
<tr>
<td>Go-Me</td>
<td>70.2±5.57</td>
<td>77.6±6.53***</td>
<td>74.7±6.26**.§§</td>
<td><0.001</td>
</tr>
</tbody>
</table>

P-ANOVA test and Post-hoc Tuckey test*,**,*** p<0.05,0.01,0.001 vs. KG, §, §§, §§§ p<0.05, 0.01, 0.001 vs. Analized group before operation

PAPER ACCEPTED
Table 2

The values of angular skeletal variables in the control group and in the experimental group before and after surgery

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group</th>
<th>Exp. group before operation</th>
<th>Exp. group after operation</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNA</td>
<td>81.4±3.38</td>
<td>79.2±4.66</td>
<td>83.7±5.60 disgusting</td>
<td>ns</td>
</tr>
<tr>
<td>SNB</td>
<td>79.3±3.06</td>
<td>84.0±4.38 ***</td>
<td>82.7±4.72 disgusting</td>
<td><0.001</td>
</tr>
<tr>
<td>ANB</td>
<td>2.1±1.30</td>
<td>4.7±3.04 ***</td>
<td>1.3±1.22 disgusting, disgusting</td>
<td><0.001</td>
</tr>
<tr>
<td>N-S/P</td>
<td>8.2±3.53</td>
<td>8.8±4.68</td>
<td>9.2±5.63 ns</td>
<td></td>
</tr>
<tr>
<td>N-S/N</td>
<td>30.6±5.56</td>
<td>37.1±7.30 **</td>
<td>33.3±7.24 /</td>
<td><0.001</td>
</tr>
<tr>
<td>FH/M</td>
<td>23.3±5.57</td>
<td>28.9±7.81 **</td>
<td>24.2±6.44 disgusting</td>
<td><0.01</td>
</tr>
<tr>
<td>PP/MI</td>
<td>22.9±5.58</td>
<td>28.2±8.00 **</td>
<td>23.4±8.77 disgusting</td>
<td><0.01</td>
</tr>
<tr>
<td>ArGo?</td>
<td>123.0±5.91</td>
<td>135.5±10.85 ***</td>
<td>127.5±7.43 disgusting, disgusting</td>
<td><0.001</td>
</tr>
<tr>
<td>ArGo?</td>
<td>49.9±3.20</td>
<td>51.3±8.76</td>
<td>50.8±5.61 ns</td>
<td></td>
</tr>
<tr>
<td>NGoN</td>
<td>73.0±4.58</td>
<td>82.4±7.79 ***</td>
<td>76.6±4.45 disgusting, disgusting</td>
<td><0.001</td>
</tr>
<tr>
<td>NSAr</td>
<td>123.5±6.66</td>
<td>125.1±10.83</td>
<td>125.3±8.51 ns</td>
<td></td>
</tr>
<tr>
<td>SArGr</td>
<td>144.3±6.32</td>
<td>138.3±11.92 *</td>
<td>139.3±10.63 /</td>
<td><0.05</td>
</tr>
<tr>
<td>Bjork</td>
<td>390.9±5.31</td>
<td>398.8±9.91 **</td>
<td>392.1±5.97 disgusting</td>
<td><0.001</td>
</tr>
<tr>
<td>sum</td>
<td>176.8±1.86</td>
<td>172.0±5.70 **</td>
<td>170.7±6.39 ***</td>
<td><0.001</td>
</tr>
</tbody>
</table>

P-ANOVA test and Post-hoc Tuckey test: *** p<0.001, 0.001 vs. KG, §, §§, §§§ p<0.05,0.01, 0.001 vs. Analized group before operation
Fig. 1 – Cephalometric analysis of parameters by „Dr.Ceph“ computers software.

Fig. 2 – Examined linear skeletal variables.
Fig. 3 – Examined angular skeletal variables.

Received on September 6, 2018.
Revised on March 11, 2019.
Accepted May 16, 2019.
Online First May, 2019.