ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article PERFORMANCE ON THE REY-OSTERRIETH COMPLEX FIGURE TEST AND THE CORRELATION WITH THE MAGNETIC RESONANCE IMAGING BRAIN LESION VOLUME IN MULTI-INFRACT VERSUS SMALL VESSEL DISEASE DEMENTIA

POSTIGNUĆA NA TESTU REY OSTERIETH SLOŽENE FIGURE I NJIHOVA POVEZANOST SA VOLUMENOM ISHEMIJSKIH LEZIJA MOZGA VIZUALIZOVANIH TEHNIKOM MAGNETNE REZONANCE KOD MULTI-INFARKTNE DEMENCIJE U ODNOSU NA DEMENCIJU MALIH KRVNIH SUDOVA

Authors Marija D Semnic⃰†, Robert Semnic‡, Željka Nikolašević‖, Vojislava V Bugarski Ignjatović†‖, Tijana Ž Vujanić Stankov†¶, Smiljana Kostić§¶, Gordana Ocić⃰⃰, Duško Kozić†‡*, Vojnosanitetski pregled (2019); Online First March, 2019.

UDC:

DOI: https://doi.org/10.2298/VSP191220039S

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
PERFORMANCE ON THE REY-OSTERRIETH COMPLEX FIGURE TEST AND THE CORRELATION WITH THE MAGNETIC RESONANCE IMAGING BRAIN LESION VOLUME IN MULTI-INFRACT VERSUS SMALL VESSEL DISEASE DEMENTIA

POSTIGNUĆA NA TESTU REY OSTERIETH SLOŽENE FIGURE I NJIHova POVEZANOST SA VOLUMENOM ISHEMIJSKIH LEZIJA MOZGA VIZUALIZOVANIH TEHNIKOM MAGNETNE REZONANCE KOD MULTI-INFARKTNE DEMENCIJE U ODNOSU NA DEMENCIJU MALIH KRVNIH SUDOVA

Marija D Semnic†, Robert Semnic‡, Željka Nikolašević‖, Vojislava V Bugarski Ignjatović†‖, Tijana Ž Vujanić Stankov†, Smiljana Kostić§¶, Gordana Ocić*, Duško Kozić† ‡ ‡

*University of Novi Sad, Faculty of Medicine, Department for Neurology;
†Clinical Centre of Vojvodina, Clinic for Neurology,
‡Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Country Sweden,
‖University of Novi Sad, Faculty of medicine, Department for Psychology,
§Military Medical Academy, Belgrade, Clinic for Neurology;
¶University of Defence, Faculty of Medicine of Military Medical Academy, Department for Neuropsychiatric Science,
* Neurocentar Ocic, Belgrade,
††University of Novi Sad, Faculty of medicine, Department for Radiology;
‡ ‡Vojvodina Institute of Oncology, Sremska Kamenica, Center for Diagnostic Imaging

Corresponding to:
Marija Semnic
marija.semnic@mf.uns.ac.rs
Abstract

**Background/Aim.** As regards several cognitive domains, including visuospatial and visuoconstructual abilities, little is known about differences between vascular dementia (VaD) subtypes, even in the most common subtypes such as multi-infarct dementia (MID) and subcortical ischemic small vessel disease dementia (SSVD). To identify differences between performances on the Rey Osterrieth Complex Figure (ROCF) test in MID and SSVD, and to correlate the ROCF scores in both groups with magnetic resonance imaging (MRI) ischemic lesion load. **Methods.** 60 VaD subjects matched for severity of dementia, age and education participated: 32 with SSVD and 28 with MID according to the NINDSS AIREN (National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherche et l'Enseignement en Neurosciences) neuroradiological criteria. ROCF was given to all subjects in the three test conditions: copy, immediate recall after 3 minutes and delayed recall after 45 min. Quantitative scoring system was performed. Magnetic resonance imaging (MRI) ischemic brain volumes of anterior and posterior lesions, left and right hemispheric lesions, left and right sided basal ganglia lesions and total lesion load (TLL) were calculated in both groups. **Results.** MID group was more impaired than SSVD on ROCF copy (p = 0.008), immediate recall (p= 0.005) and delayed recall (p = 0.001). There were significant correlations between ROCF copy score and the TLL (p<0.05) and posterior brain lesion volume (p<0.05) in MID. **Conclusion.** The importance of visuospatial, visuoconstructual deficit and impairment of visual memory is misregarded in VaD subtypes. These impairments are more severe in MID than SSVD and the deficit of ROCF copying in MID patients correlates with posterior and total MRI lesion volume.

**Key words:**
vascular dementia, visuospatial skills; visuoconstruction, visual memory.

Apstrakt

**Uvod/Cilj.** U odnosu na kognitivnih domene, uključujući i vizuospatialne i visuokonstruktivne sposobnosti, do sada su malo opisivane razlike između podtipova
vaskularne demencije (VaD), pa čak i kod najčešćih kao što su multi infarktna demencija (MID) i demencija u okviru supkortikalne ishemijske bolesti malih krvnih sudova (SSVD). Cilj: Utvrditi da li postoji razlika između obolelih od MID i SSVD u odnosu na postignuća na testu Rey Osterrieth složene figure (ROCF), kao i da li postoji povezanost između postignuća na ROCF i volumena ishemijskih lezija na magnetnoj rezonanci mozga (MR). 

**Metode.** Uključeno je 60 obolelih od VaD ujednačenih u odnosu na težinu demencije, starosnu strukturu i stepen obrazovanja, i u odnosu na NINDCS AIREN (National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherche et l'Enseignement en Neurosciences) neurardiološke kriterijume. Grupa ispitanika je podeljena na grupu MID sa 28 bolesnika i grupu SSVD sa 32 bolesnika. Kod svih ispitanika je izražen kvantitativni skor kopiranja ROCF, neposrednog prisećanja ROCF nakon 3 minuta i odloženo prisećanje ROCF nakon 45 minuta. Načinjena je kalkulacija volumena ishemijskih lezija mozga u obe ispitivane grupe, za volumene anteriornih lezija, posteriornih, lezija leve i desne hemisfere, lezije bazalnih ganglija sa leve i desne strane i ukupnog volumena lezija mozga.

**Rezultati.** u grupi MID je bilo teže oštećenje nego u grupi SSVD na testu kopiranja ROCF (p = 0,008), neposrednog prisećanja (p= 0,005) i odloženog prisećanja ROCF (p = 0,001). U grupi MID su pronađene značajne povezanosti između kopiranja ROCF i volumena ukupnih ( p < 0.05) i posteriornih lezija mozga (p < 0.05) na MR. **Zaključak.** Kod podtipova VaD je zanemaren značaj vizuospatialnog i vizuokonstrukcionalnog deficita kao i oštećenja vizuelnog pamćenja. Ova oštećenja su teža kod MID nego kod SSVD. Postoji povezanost deficita kopiranja ROCF sa volumenom ukupnih i posteriornih lezija na MR kod obolelih od MID.

**Ključne reči:** vaskularna demencija, vizuospatialne sposobnosti; vizuokonstrukcione, vizuelno pamćenje.
Introduction

The association between vascular brain lesions and cognitive deficits has been described over the past decades through the concept of vascular dementia (VaD) and vascular cognitive impairment. The heterogeneity of VaD influenced the problem of classification and terminology within the category, in which numerous VaD subtypes are recognized. Different etiologies, pathogenesis, and pathomorphological substrates in the VaD subtypes have affected the specificity of their cognitive profiles. Two most common VaD subtypes are large vessel disease dementia, or as many authors call it multi-infarct dementia (MID), and subcortical ischemic small vessel disease dementia (SSVD).

MID occurs most commonly as a result of multiple major cortical infarcts, and impairments of cognitive functions in MID depend on the localization of infarction, and include focal neuropsychological symptoms such as alexia, agraphy, acalculia, agnosia, apraxia, visuospatial and visuoconstructive disorders, and impairment of verbal and nonverbal memory.

The most common pathological substrate of SSVD includes subcortical lacunar infarcts and extensive white matter ischemic disease, which manifests as lacunar state or the Binswanger's disease or their overlap. SSVD’s cognitive profile is characterized by impairment of executive functions, decreased information processing speed, impaired attention and working memory.

Visuospatial skills involve the person's skill to identify the object visually, as well as to determine its localization, spatial coordinates, and relationships with other objects. Tests for the assessment of visuospatial abilities measure the subject’s ability for visual discrimination, i.e. identification of the shape, the wholeness, details, understanding the similarities and differences in visual material, the ability to synthesize visual information, and the ability to imagine the object. Constructive praxia implies the ability of assembling or organizing parts into one whole. Impairments in this domain are reflected in free drawing and copy tests. Non-verbal topographic or visual memory is a complex process that relates to receiving, processing, storing and recalling visual information.

The Rey-Osterrieth Complex Figure (ROCF) is widely used to assess visuospatial abilities, construction praxia in two dimensions and non-verbal memory as well forming
the strategy, planning and organization. The performance on the ROCF can be assessed by quantitative and qualitative scoring. Successful copying of Rey's figure requires the activation of attention and concentration, the ability of visuospatial perception for identifying elements of the figure, visuomotor coordination with the control of the executive system, which is all associated with the activation of different brain zones, such as the right occipitoparietal lobe, the prefrontal lobe, the superior parietal lobulus and Brodman’s field V5.

Impairments of visuospatial and visuoconstructive functions in stroke are mainly associated with lesions of the right hemisphere, although there are studies that do not report the importance of lateralization. Visuospatial and visuoconstructive deficits have been associated with infarction in the middle cerebral artery circulation, posterior lesions, occipital and parieto-occipital lesions and bilateral posterior lesions. All this points to the importance of strategic localization of ischemic lesions in the development of impairments of these cognitive functions, but so far there has been few reports of the difference between the VaD subtypes in relation to impairments of mentioned neuropsychologic functions.

The aim of this study was to examine whether MID and SSVD differed in relation to the impairment of visuospatial abilities and visuoconstructive abilities in two dimensions and visual memory using the ROCF test, as well as to determine if there was a correlation between these impairments and the volume of ischemic lesion measured on magnetic resonance imaging (MRI).

Methods

The study included 60 patients with probable VaD according to the NINDS-AIREN (National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherche et l'Enseignement en Neurosciences) criteria, aged 50 to 80 years, with 8 to 16 years of education. The study was prospective and randomized. The sample of patients with VaD was divided into two groups according to the operationalized NINDS-AIREN neuroradiologic criteria for vascular dementia: MID comprising 28 patients (17 men and 11 women) and SSVD comprising 32 patients (23 men and 9 women). The study included patients with mild and moderate dementia with Mini Mental State Examination
Test (MMSE) score 15-25. The study did not include patients with deep paresis or plegia of the dominant hand, visual and hearing impairments, and patients who have aphasia, delirium, outpatients and inpatients treated at the Clinic for Neurology in Novi Sad, the Clinical Center of Vojvodina.

The standard procedure for copying the Rey-Osterrieth complex figure (ROCF) was applied. Visuospatial and visuoconstructive abilities in two dimensions were evaluated using the ROCF copy, immediate recall after 3 minutes using the ROCF immediate recall, and delayed recall after 45 minutes using the ROCF delayed recall. All 18 ROCF elements in all three attempts to draw ROCF were scored as follows: 2 points for correct and well placed figure; 1 point for correct and poorly placed figure; 1 point for deformed or incomplete figure, or recognizable and well placed; 0.5 point for deformed or incomplete, or recognizable and poorly placed figure; 0 point for missing or unrecognizable figure. The maximum score was 36. The lower scores indicated a lower performance. To evaluate the accuracy of the elements of the figure, Taylor descriptive criteria were used.

Visualization of cerebral ischemic lesions was done with the Siemens Avanto II apparatus (Erlangen, Germany), the magnitude of magnetic field of 1.5 Tesla and the 3T Trio-Team in the interval of up to 3 months from the date of neuropsychological testing. The study excluded patients who were in the acute phase of stroke.

For the determination of the volume of ischemic lesions, the following protocol was used: 1) FLAIR (Fluid attenuation inversion recovery) sequence in the sagittal plane, slice thickness of 1 mm. Between 144 and 191 slices were used, 1 mm thick, depending on the volume of the cranium; Diffusion sequences (B = 0; 500; 1000) in the transversal plane with calculated ADC map (apparent diffusion coefficients), 5mm thick, in order to exclude the presence of an acute infarction.

Neuroradiological criteria and volume calculation were made by a neuroradiologist who was blinded for the information on the neurological status or neuropsychological profile of the patient.

The calculation of the lesion volume on MRI slices was done by a semi-automated method, using the non-commercial software program MIPAV (Medical Image Processing Analysis and Visualization). The MIPAV program was used to analyze each individual FLAIR sagittal MRI slice, in the DICOM (Digital Imaging and Communications in Medicine) format.
MIPAV is designed to automatically isolate the ischemic area from the surrounding, intact parenchyma, based on the difference in the signals of the changed and unchanged brain parenchyma. This is made possible by using the FLAIR (Fluid-attenuated inversion recovery) MRI sequence that optimally displays changed parenchyma in the form of a high signal (ischemia, gliosis, myelin destruction) and preserved parenchyma which has an intermediary signal. The Figure 1. shows an example of mapping ischemic parenchyma in a patient with leukoaraiosis.

Figure 1.

The volume of ischemic lesions was calculated by multiplying the surface area of the ischemic area automatically calculated with the MIPAV program using 1 mm MRI slices with the obtained volume of ischemic lesion in mm³. By dividing the product with 1000, the volume of the lesion in milliliters was obtained. For both study groups the following parameters were calculated: the volume of right-sided lesions (MRI right), the volume of left-sided lesions (MRI left), the volume of anterior or prerolandic lesions (MRI anterior), the volume of posterior or postrolandic lesions (MRI posterior), the volume of basal ganglia on the right (MRI BG right) and volume of basal ganglia on the left (MRI BG left).

The research was conducted in accordance with the Ethical Principles of Medical Research Involving Human Subjects - the World Medical Association Declaration of Helsinki and with the consent of the Ethics Committee of the Medical Faculty of the University of Novi Sad and the Ethics Committee of the Clinical Center of Vojvodina.

As part of descriptive statistics, data were presented in the form of arithmetic mean, standard deviation, median and range. At the level of inferential statistics, the significance of the difference between the investigated groups was tested with Student t-test. In case of a disturbed normality of distribution, Mann-Whitney U-test was used to determine differences between the groups. The correlation of the tested parameters (performance on the ROCF and volumetric measures of brain damage) was determined by Spirman's rank correlation coefficient, since the distribution of the volume variables significantly deviated from the normal distribution. Statistical data were processed using the statistical software package SPSS (SPSS 17.00 for Windows).
Results

There was a statistically significant difference in all three subtests of Rey-Osterrieth Complex Figure Test (copy, immediate recall, and delayed recall) between MID and SSVD patients (Table 1). Additionally, SSVD group had a statistically significant higher average ROCF score in all three subtests than MID.

Table 1.

Regarding descriptive parameters of brain injury volume on MRI (Table 2), there were higher average volume of ischemic lesion in right compared to left cerebral hemisphere in MID patients, and posterior compared to anterior parts. On average, SSVD patients had higher volume of lesions in right compared to left cerebral hemisphere, and anterior compared to posterior parts. On average, SSVD patients had the smallest lesion volumes in the left sided basal ganglia.

Table 2.

There was a statistically significant moderate negative correlation between MRI total brain lesion volume with ROCF copy score (-0.484) and MRI volume of posterior lesions with ROCF copy score (-0.455) in MID patients (Table 3). No other correlations in MID patients were statistically significant. In SSVD patients, there was a statistically significant moderate positive correlation between MRI total brain lesion volume with ROCF immediate recall score (0.490), and MRI posterior lesion volume with ROCF immediate recall score (0.424) (Table 4). No other correlations in SSVD patients were statistically significant.

Table 3.

Table 4.
Figure 2 represents an example of severe impairment in the visuospatial domain, deficit of visuoconstructional praxia with perseverations, as well as deficit of immediate and delayed recall ROCF in patients with SSVD.

Figure 2.

Discussion

The aim of this study was to compare whether there were differences in the performance on the ROCF test between patients with MID and those with SSVD, with the groups matched for gender, age structure, education and severity of dementia, as well as to assess whether there was a correlation between ROCF performance and the volume of brain ischemic lesions.

ROCF is recommended for the assessment of visuospatial abilities as part of the 60-minute protocol in the examination of cognitive functions in vascular cognitive impairment\textsuperscript{17,18}. Our results confirmed that patients with VaD had deficits in visuospatial and visuoconstructive abilities and visual memory\textsuperscript{19}. Our data showed that in the MID and SVDD groups there were low scores on ROCF copy (Table 1), which means that both groups had problems with visual perception, organization, assembling the whole and data processing, but since the scores on immediate and delayed recall were low as well, this indicated also the problem of coding and storing visual information.

Although vascular dementia is the second most common among dementias, the results of neuropsychological studies are not unambiguous in terms of specifying a clear neuropsychological profile associated with vascular brain damage\textsuperscript{19}. Considering that the differences in the deficits of numerous cognitive functions\textsuperscript{19} have not yet been clearly defined between the VaD subtypes, the characteristics of the visuospatial impairment are not sufficiently defined either, nor is the deficit of constructional praxis in VaD subtypes. The heterogeneity of VaD\textsuperscript{21,22}, multiple classifications and diagnostic criteria influence interpreting the results of neuropsychological studies in VaD. However, it was observed that between VaD subtypes, executive functions were more frequently impaired in small vessel dementia compared to large vessel and mixed dementia, and that visuospatial and
language deficits were more commonly expressed in large vessel dementia (37.1% versus 15.5%).

Our study indicates that patients with MID have more severe impairment of visuospatial and visuoconstructive abilities, as well as a more severe deficit of visual memory, compared to SSVD (Table 1).

The lesion volumetry in MID group on MRI showed a higher lesion volume in the right cerebral hemisphere than in the left, as well as in the posterior regions compared to the anterior ones (Table 2). Although the volume threshold was not the subject of research in this study, we analyzed also patients with very small lesion volumes. This can indirectly confirm the results of earlier studies, which in the context of association between cognition and imaging parameters in VaD, emphasize a greater importance of localization than the volume of ischemic lesions, where the strategic localizations include the dominant angular gyrus, the territory of the anterior cerebral artery and posterior cerebral artery, the territory of the upper middle cerebral artery, left anterior corona radiata artery, basal ganglia, bilateral medial thalamus, dominant nucleus caudatus, anterior capsula interna, hippocampus, amygdala, and basal forebrain.

However, some imaging studies also showed contradictory results on the correlation between the infarct location and dementia. The stated result of our study may indirectly indicate the importance of other parameters, such as total number of lesions, lesion size, bilaterality of infarction.

In the MID group was found the association between the volume of total and posterior ischemic lesions and performance on the ROCF copying test, while in all other investigated domains in this group, as well as in SSVD, no statistically significant negative correlation was found between performance on ROCF and volumetric measures (Table 3 and 4). A possible reason for the absence of the correlations in the present study is the insufficient sensitivity of standard MRI techniques, since studies using advanced neuroimaging techniques have shown significant correlations with cognitive impairment in VaD, especially in SSVD.

In agreement with earlier studies, our results found an association between cognitive impairment and the volume of ischemic lesion. However, it should be taken into account that the volume of functional loss may be more important because it involves the effect of deafferentation of the cortex.
The association between visuospatial and visuoconstructive deficits with right hemispheric infarction and posterior lesions\(^*\) was confirmed, but our study anticipate also the importance of MRI posterior ischemic volumes. A lower performance in the MID group on the ROCF copy was associated with MRI posterior volumes and with the total lesion load, indicating the association between diffuse lesions and the visuospatial and visuoconstructive deficits in MID.

The low ROCF performance in SSVD in our study is in accordance with published data that have shown that visuoconstructive deficits occur in subcortical white matter lesions, as well as in diffuse brain lesions and small infarctions\(^*\)\(^*\). Although it was not included in our study, the qualitative analysis is important in assessment of copying, immediate or delayed recall of ROCF, as the figure 2 shows. Nevertheless, indicative low ROCF scores in SSVD, as our results present, are also important and were most likely a part of the dysexecutive syndrome, which is the leading deficit in SSVD. It may occur as a feature of the interruption of the fronto - subcortical circles, within diffuse changes of the white matter and lacunae with predilection for subcortical frontal regions.

Moderate positive correlation was found between the total lesion load and ROCF immediate recall in the SSVD group, as well as between the posterior lesion volume and ROCF immediate recall (Table 4). This result could generally reduce the significance of volume of ischemic lesions on MRI in terms of visual memory deficits in patients with SSVD.

Study limitations encompass insufficient sensitivity of volumetric measurements with a standard MRI technique and lack of CSF and imaging biomarkers of amyloid pathology so patients with mixed pathology could not have been excluded.

**Conclusion**

In patients suffering from multi-infarct dementia of mild to moderate severity, there is a more severe impairment of visuospatial and visuoconstructive abilities in two dimensions, as well as a more severe impairment of immediate and delayed visual memory, compared to patients with mild to moderate subcortical ischemic small vessel disease dementia. In patients with multi-infarct dementia, there is a correlation between lower ROCF copy scores with a higher total lesion load and a larger volume of posterior lesions.
References


Table 1

Mean score differences on the Rey-Osterrieth Complex Figure (ROCF) Test between patients with Multi infarct dementia (MID) and Subcortical small vessel disease dementia (SSVD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MID</th>
<th>SSVD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=28)</td>
<td>(n=32)</td>
<td></td>
</tr>
<tr>
<td>x + SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCF copy*</td>
<td>8.27± 7.60</td>
<td>13.31± 6.69</td>
<td>0.008</td>
</tr>
<tr>
<td>ROCF immediate recall†</td>
<td>2.61± 3.10</td>
<td>4.59± 3.00</td>
<td>0.005</td>
</tr>
<tr>
<td>ROCF delayed recall*</td>
<td>1.95± 1.82</td>
<td>4.30± 3.07</td>
<td>0.001</td>
</tr>
</tbody>
</table>

x – arithmetic mean; SD – standard deviation, *Student’s t test; † Mann-Whitney U-test

Table 2.

Descriptive parameters of magnetic resonance imaging (MRI) ischemic brain injury volume in patients with Multi infarct dementia (MID) and Subcortical small vessel disease dementia (SSVD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MID</th>
<th>SSVD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=24)</td>
<td>(n=28)</td>
</tr>
<tr>
<td></td>
<td>range median</td>
<td>x+SD</td>
</tr>
<tr>
<td>MRI total</td>
<td>1,3-146,1</td>
<td>53,0</td>
</tr>
<tr>
<td>MRI anterior</td>
<td>0,2-121,7</td>
<td>21,7</td>
</tr>
<tr>
<td>MRI posterior</td>
<td>0,0-98,7</td>
<td>24,7</td>
</tr>
<tr>
<td>MRI left</td>
<td>0,0-141,2</td>
<td>13,5</td>
</tr>
<tr>
<td>MRI right</td>
<td>0,0-145,6</td>
<td>22,4</td>
</tr>
</tbody>
</table>
\( \bar{x} \) – arithmetic mean; SD – standard deviation,

Table 3.

Spearman’s rank correlation coefficient between Rey-Osterreith Complex Figure (ROCF) Score and magnetic resonance imaging (MRI) volumetric brain lesions correlation in patients Multi infarct dementia (MID)

<table>
<thead>
<tr>
<th></th>
<th>ROCF copy</th>
<th>ROCF immediate recall</th>
<th>ROCF delayed recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI total</td>
<td>-0.484*</td>
<td>-0.245</td>
<td>-0.228</td>
</tr>
<tr>
<td>MRI anterior</td>
<td>-0.198</td>
<td>0.007</td>
<td>0.088</td>
</tr>
<tr>
<td>MRI posterior</td>
<td>-0.455*</td>
<td>-0.387</td>
<td>-0.262</td>
</tr>
<tr>
<td>MRI left</td>
<td>-0.091</td>
<td>-0.188</td>
<td>-0.305</td>
</tr>
<tr>
<td>MRI right</td>
<td>-0.378</td>
<td>-0.140</td>
<td>-0.027</td>
</tr>
<tr>
<td>MRI BG left</td>
<td>-0.131</td>
<td>-0.058</td>
<td>0.158</td>
</tr>
<tr>
<td>MRI BG right</td>
<td>-0.117</td>
<td>-0.005</td>
<td>0.033</td>
</tr>
</tbody>
</table>

* \( p < 0.05 \)

Table 4.

Spearman’s rank correlation coefficient between Rey-Osterreith Complex Figure (ROCF) Score and magnetic resonance imaging (MRI) volumetric brain lesions correlation in patients with Subcortical small vessel disease dementia (SSVD)

<table>
<thead>
<tr>
<th></th>
<th>ROCF copy</th>
<th>ROCF immediate recall</th>
<th>ROCF delayed recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI total</td>
<td>-0.005</td>
<td>0.490†</td>
<td>0.298</td>
</tr>
<tr>
<td>MRI anterior</td>
<td>0.006</td>
<td>0.283</td>
<td>0.313</td>
</tr>
<tr>
<td>MRI posterior</td>
<td>0.054</td>
<td>0.424*</td>
<td>0.354</td>
</tr>
<tr>
<td></td>
<td>MRI left</td>
<td>MRI right</td>
<td>MRI BG left</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>0.123</strong></td>
<td>0.198</td>
<td>0.205</td>
<td><strong>0.235</strong></td>
</tr>
<tr>
<td><strong>-0.012</strong></td>
<td>0.294</td>
<td>0.132</td>
<td><strong>0.177</strong></td>
</tr>
<tr>
<td><strong>0.205</strong></td>
<td>0.132</td>
<td>0.140</td>
<td><strong>0.048</strong></td>
</tr>
</tbody>
</table>

*p < 0.05  †p < 0.01

Received on December 20, 2019.
Accepted March 12, 2019.
Online First March, 2019.