ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article NON-MELANOMA SKIN CANCER IN SERBIA 1999-2015 – THE NEED FOR NATIONAL PREVENTION STRATEGY AND CONTROL

NEMELANOMSKI KARCINOMI KOŽE U SRBIJI 1999-2015 – POTREBA ZA NACIONALNOM STRATEGIJOM ZA PREVENCIJU I KONTROLU

UDC:

DOI: https://doi.org/10.2298/VSP181112201I

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
NON-MELANOMA SKIN CANCER IN SERBIA 1999-2015 – THE NEED FOR NATIONAL PREVENTION STRATEGY AND CONTROL

NEMELANOMSKI KARCINOMI KOŽE U SRBIJI 1999-2015 – POTREBA ZA NACIONALNOM STRATEGIJOM ZA PREVENCIJU I KONTROLU

Danijela Ilić*, Goran Videnović*, Ružica Kozomara†, Sonja S. Radaković‡, Zoran Vlahović*, Vladimir Matvijenko*, Snežana Živković◊

* Medical Faculty Pristina, University of Priština, Kosovska Mitrovica, Serbia
† Medical faculty of the Military Medical Academy, University of Defence, Clinic for Maxillofacial Surgery, MMA, Belgrade, Serbia;
‡ Medical faculty of the Military Medical Academy, University of Defence, Sector of Preventive Medicine MMA, Belgrade, Serbia;
◊ Cancer Registry of Serbia, Department for Prevention and Control of Noncommunicable Diseases, Institute of Public Health of Serbia “Dr Milan Jovanović – Batut”, Belgrade, Serbia.

Corresponding author: Danijela Ilic, e-mail: danijela_hig@yahoo.com
Abstract

Background/Aim. Non-melanoma skin cancer (NMSC) is one of the most rapidly increasing cancers worldwide. Although NMSC has a relatively low mortality rate, it is an important public health concern and the most costly cancers in many countries. The two main objectives in this study are: first, to analyze the trend of age-standardized incidence rate of NMSC skin cancer in Serbia and second, to assess the need for national prevention strategy and control based on analyzed trend. Methods. From the Serbian Cancer Registry, we extracted all cases of NMSC registered in central Serbia from January 1, 1999 to December 31, 2015. Joinpoint regression analysis was used to define trends and annual percentage change (APC). Results. NMSC significantly increased for both genders with annual percent change of 2.32% (p<0.001). Significantly increasing trend of incidence rates was higher in women (APC, 2.63%; p<0.0001) than in men (APC, 2.01%; p<0.001). Conclusion. Our results show a continuously increasing incidence rate of non-melanoma skin cancer in Serbia. Without the national preventive strategy, current sporadic activities are highly unlikely to result in reducing the growing trends.

Key words: non-melanoma skin cancer; incidence; prevention.

Apstrakt

Introduction

Non-melanoma skin cancers (NMSC) are the most common cancers in the world. Although these cancers include other rare cutaneous neoplasms the term generally refers to basal cell carcinoma (BCC) and squamous cell skin carcinoma (SCC) (1). NMSC is one of the most rapidly increasing cancers worldwide (2,3). The world’s highest incidence is among the white population of Australia and New Zealand (4) and it is very low among the black population (5). In the United
States NMSC accounts for over 5.4 million cases in more than 3.3 million people and more people have had skin cancer than all other cancers combined (6).
The primary risk factor for developing non-melanoma skin carcinoma is exposure to ultraviolet radiation (UVR). UVR induced deoxyribonucleic acid - DNA damage causes genetic alterations which play a crucial role in skin photoaging and the genesis of skin cancer (7, 8). Some studies are shown that outdoors working individuals have 40 to 80% higher risk for developing BCC and SCC due to exposure to sunlight (9, 10). Indoor tanning is also highly associated with an increased risk of both NMSC and the risk is higher with use in early life (11, 12). Other risk factors include the phenotype of an individual such as fair skin, blue eyes and red hair (13). Although the NMSC has a relatively low mortality rate they are an important public health concern and the most costly cancers in many country (14, 15, 16, 17).
Collecting data on NMSC incidence rate based on national cancer registers is important because they provide information for planning health policies and assist in understanding needs and effectiveness of prevention for that particular region (17, 18).
Skin cancer prevention activities have been performed throughout the entire world. In Europe, Euromelanoma as a pan-European prevention programme against NMSC and melanoma started in 1999 and spread in 33 countries (Serbia included) (19, 20, 21). However, public health significance of NMSC seems to be unrecognized in Serbia, there is no national prevention strategy for control this cancer and only a few studies reported incidence rate of NMSC in Serbia (18, 22).

Objective

There are two main objectives in this study: first, to analyze the trend of age standardized incidence rate of non-melanoma skin cancer in Serbia and second, to assess the need for national prevention strategy and control based on analyzed trend.

Method

Type of study and data sources
Our retrospective descriptive epidemiological study presents the incidence rate of NMSC in Serbia during a 17-year study period (1999-2015). The Serbian Cancer Registry (The Registry) had been established in 1970 and became a member of the International Agency for Research on Cancer (IACR) and European Network of Cancer Registries (ENCR) in 1998. All health institutions in Serbia (private and state) are mandated by law to submit a report on all new cases of malignant tumours to The Registry. Our study was conducted in central Serbia (excluding provinces Vojvodina and Kosovo and Metohija) which had a population of 5,506,936 in 1999 and 5,203,682 in 2015. Information on the size and migration population in the past was provided by the Statistical Office of the Republic of Serbia.
Statistical analysis
From The Registry, we extracted all cases of NMSC registered in central Serbia from January 1, 1999 to December 31, 2015 based on the International Classification of Diseases, Tenth Revision (ICD-10) code C44 (23). Age-specific incidence rates were calculated using the following age groups: below 39, 40–49, 50–59, 60–69 and over 70 years of age. To allow comparison between our data and data from other regions, age-standardized incidence rates (ASIR) were calculated using the direct standardization method to the world population (24). Incidence rates were
reported as the incidence per 100,000 persons yearly. Trends and annual percentage change (APC) of the incidence rate with corresponding 95% confidence intervals (CI) were calculated by performing joinpoint regression analyses using the Joinpoint Regression Software version 4.6.0.0 (available at https://surveillance.cancer.gov/joinpoint/download). The trend was considered as significant when the p-value was below 0.05 (p < 0.05).

Results

During the 17-years period (from January 1st 1999 to December 31st 2015) a total number of 48.488 persons (25.213 men and 23.275 women) with primary non-melanoma skin cancer were reported to the National Cancer Registry of Central Serbia. Women represented 48% of all persons and men 52%. Table 1 shows age-specific incidence rates, crude rate, and age-standardised incidence rate (world standard population) per 100.000 persons for all, men and women. The age-specific incidence rates are the highest in the age group over 70 years and approximately 50% (49.9% male and 50.8% female) of all registered cases are in this age group. About 3% (2.3% male and 3.2% female) of all registered cases of NMSC belong to a group under 39 years of age. Table 2 presents world age-standardized rate and number of patients with primary non-melanoma skin cancer in Serbia through the entire study period.

The lowest level of ASIR of non-melanoma skin cancer in the Republic of Serbia was in the first year of the observation period, in 1999 (19.74 per 100.000 men, 95% CI: 18.46-21.01 and 15.22 per 100.000 women). ASIR is gradually increasing and reached the highest level in 2014 (33.31 per 100.000 men, 95% CI: 31.78-34.84 and 26.12 per 100.000 women, 95% CI: 24.89-27.36). Based on the joinpoint analysis, ASIR of NMSC in Serbia significantly increased, for both gender combined, in the period 1999-2015 with APC of +2.32% (95% CI: 1.60 - 3.10, p<0.001) (Fig. 1). Significantly increasing trend of ASIR was higher in women (APC, +2.63%; 95% CI: 1.50 - 3.80; p<0.0001) (Fig. 2) than in men (+APC, 2.01%; 95% CI: 1.01 - 3.10; p<0.001) (Fig. 3).

Discussion

This national register-based study analyzes the trends of NMSC over a period of 17 years and it is one of the few studies (18, 22) describing the incidence of NMSC in the Serbia. Our study showed that NMSC is the most common among the elderly; the age-specific incidence rates is the highest in the age group over 70 years (50%) and very low in the younger age (3%). The age distribution of NMSC cases is similar to other reports (4, 25, 26, 27, 28). Many studies have confirmed that cumulative exposure to UVR, especially in the first two decades of life, plays the key role in carcinogenic process of skin cancer (7, 8). The reason for the highest age-specific incidence rates in elderly in our study is probably the ageing of the population in Serbia. Another reason for prevalence of skin cancer in the age group over 70 years could be a lack of information regarding the importance of harmfulness of excessive exposure to UVR among the elderly population at the time in their youth. Although the incidence rate is very low in younger age this is the right time to start with preventive activities. NMSC generally takes many years to appear but is usually caused during young age. The most of the damage resulting in skin cancer occurs in the adolescent and childhood and therefore prevention strategies need to focus on sun protection education especially towards these age groups (29, 17). Thus, schools are the most important institution where awareness of NMSC and education of sun protection should start. In Australia, the country with the highest incidence rate of NMSC in the world, SunSmart Schools
Program is the main skin cancer control strategy for more than 20 years. This program includes promoting the use of sun-protective clothing and shade-seeking behavior (30). Many Australian schools have already improved sun-protective behaviors (31). In Serbia, there are no national educational school programs focused on sun protection so far. In fact, only one published educational program was implemented for some high school students in Belgrade from 2007 to 2008. The goal of this program was to increase awareness among students of harmfulness of excessive exposure to UVR and to educate them on sun protection measures (32).

After analyzing ASIR of NMSC in our study, noticeable differences between gender were found: they were much higher in men than in women during the whole study period (1999-2015). Our results are compatible with findings from studies in other countries (4, 33, 34, 35). Incidence rates tend to be higher in men than in women most likely because in Serbia, men are more likely to have an outdoor occupation. Another reason could be different way of dressing and hairstyle between the genders.

Age-standardized incidence rates of NMSC in Serbia have increased more than 1.5-fold from 1999 to 2015 and our results show a continuously increasing incidence rate. The continuously increasing incidence rates of NMSC were also recorded in Australia (4), New Zealand (36), the United States (6), Canada (37), Asia (38, 39) and in European countries: Netherlands (40), Denmark (41), Italy (42) and Switzerland (43). Explanations for this increasing incidence rates could be several factors. First, and the most likely, is the increased number of people who are expose to greater UVR compared to prior generations. Spending the holiday at sunny destinations and outdoor sport activities has become more popular and more achievable than in the past, which prolonged exposure to sunshine and increased cumulative ultraviolet exposure consequently. Cumulative ultraviolet exposure is well known risk in photoaging of the skin and genesis of skin cancer (7, 8). The increasing incidence rate of NMSC in our research may also suggest that people in Serbia are not fully aware of the dangers of the excessive exposure to UVR and that little attention has been paid to raise awareness of the harmful effects of the sun in the past. Euromelanom Serbia, a part of the pan-European association of Euromelanoma Europe, has been implementing significant awareness-raising activities and changing the public's behavior regarding sun protection in recent years. Media campaign of Euromelanoma Serbia under the slogan "Serbia has a skin cancer problem" informs the public about adequate protection against UVR, both from sun and from artificial sources of ultraviolet radiation. This campaign uses various means of public communication to promote skin awareness (brochures, pamphlets, posters, mass media advertising) and benefits from an Internet platform for Serbia (https://www.euromelanoma.org/serbia). Another possible reason for growing skin cancer incidence is depletion of the ozone layer in the atmosphere and the increased air pollution in the past. Depletion of the ozone layer facilitated UVR to reach the Earth’s surface and increased the intensity of ultraviolet light exposure (44).

A more significant increase incidence rate of NMSC for women (APC = +2.63%; p<0.0001) compared to men (APC = +2.01%; p<0.001), in our study, is similar to Leiter et all. 2017, study from two federal states in Germany (34). They reported a more significant increase for women than in men between 1999 and 2012 in Schleswig-Holstein federal state (women APC = +3.3%; men APC = +2.3%) and between 1970 and 2012 in Saarland federal state (women APC = +6.3%; men APC = +6.0%). Higher increase in ASIR of NMSC in women were observed also in The Netherlands (45) and Denmark (41). Gender difference in increasing standardized incidence rate of NMSC can be caused by the use of tanning beds, because women are more prone to use sun tanning or indoor tanning than men. Use of tanning beds started in 1970s for cosmetic use
and more than 30 years later Bataille et al. 2005, in an epidemiological study on sunbed use in Europe reported that more than half of Northern European population between 18 and 50 years were using tanning beds (47). Some other studies have shown that indoor tanning increased the risk of NMSC by 40% to 102% (11), doubled the risk for SCC and in a 50% increased risk for BCC (48). Since indoor tanning had been identified as carcinogenic, many European countries (France, Spain, Portugal, Germany, Austria, Belgium, England, Wales, Northern Ireland and Scotland) made age restrictions and demanded parental permission for tanning beds use (46). Brazil outlawed indoor tanning for all age groups since 2011 (46). There is still no law in Serbia limiting the use of salon tanning and it seems that people are not aware of the dangers of it - in fact many people still believe that tanned skin is more attractive and “looks healthy”. Restrictions on the use of salon tanning in Serbia could certainly prevent the growth of incidence rate of NMSC in the future.

At first glance, low mortality rate of NMSC along with the lower age-standardized incidence rates in Serbia (Table 2) than in other countries (4, 6, 42, 43) may not qualify NMSC prevention as the national financial resource’s optimal candidate. This attitude is, of course, understandable due to the fact that Serbia is among the poorer countries in the world and already has very high mortality rates in other malignant diseases. However, the growing trend in NMSC incidence rates shown in our research (Fig. 1, 2 and 3) suggests that this type of carcinoma will undoubtedly become a significant health problem unless prevention measures are timely taken. Without the national preventive strategy, current sporadic preventive activities in Serbia are highly unlikely to result in reducing the growing trends.

Furthermore, we believe that shown NMSC incidence value in Serbia is lower than the actual one. The reason is that The Serbian Cancer Register, following the recommendations of the International Association of Cancer Registries (IARC) and the European Network of Cancer Registries, records only one NMSC per person, the first one. If a patient has multiple or a reccurent skin cancer - this is recorded as a single case. This method of recording data could result in underestimation of the true incidence of NMSC in Serbia. In Australia, Keim et al., 2015, found that 16% to 56% of patients with primary NMSC develop additional SCC or BCC (49). A similar underestimation of the true incidence of NMSC has been reported in United Kingdom (50) and Germany (51).

We strongly hope that our results prove the need to form the national prevention strategy to promote NMSC awareness, provide sun protection education and restrict indoor tanning.

Conclusion

Our results show a continuously increasing incidence rate of non-melanoma skin cancer in Serbia between 1999 and 2015. We observed much higher age-standardized incidence rates in men than in women but the increase was more significant for women compared to men. Increasing incidence rate of non-melanoma skin cancer could suggest that people in Serbia are not fully aware of the dangers of exposure to ultraviolet radiation and that little attention has been paid in the past to raise awareness of the harmful effects of both sun and indoor tanning. The development of a national prevention strategy that would include increasing the public awareness of non-melanoma skin cancer, education of sun protection and limitation of the use of sunbed tanning by the law could certainly reduce the morbidity of this cancer in Serbia.
<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Male</th>
<th></th>
<th>Female</th>
<th></th>
<th>Overall</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>I</td>
<td>N</td>
<td>I</td>
<td>N</td>
<td>I</td>
</tr>
<tr>
<td>≥39</td>
<td>578</td>
<td>19.16</td>
<td>739</td>
<td>24.56</td>
<td>1317</td>
<td>21.85</td>
</tr>
<tr>
<td>40-49</td>
<td>1280</td>
<td>40.20</td>
<td>1212</td>
<td>37.14</td>
<td>2492</td>
<td>38.65</td>
</tr>
<tr>
<td>50-59</td>
<td>3636</td>
<td>116.18</td>
<td>3208</td>
<td>96.62</td>
<td>6844</td>
<td>106.10</td>
</tr>
<tr>
<td>60-69</td>
<td>7148</td>
<td>286.82</td>
<td>6060</td>
<td>210.45</td>
<td>13208</td>
<td>245.84</td>
</tr>
<tr>
<td>70≤</td>
<td>12571</td>
<td>549.32</td>
<td>12056</td>
<td>373.25</td>
<td>24627</td>
<td>446.46</td>
</tr>
<tr>
<td>Crude rate*</td>
<td>N/A</td>
<td>56.70</td>
<td>N/A</td>
<td>49.64</td>
<td>N/A</td>
<td>53.08</td>
</tr>
<tr>
<td>WASR*</td>
<td>N/A</td>
<td>29.53</td>
<td>N/A</td>
<td>22.76</td>
<td>N/A</td>
<td>25.74</td>
</tr>
</tbody>
</table>

*all ages
N – number; I – incidence; N/A – not applicable; WASR – World age-standardized rate
<table>
<thead>
<tr>
<th>Year</th>
<th>Males</th>
<th>Females</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>WASR</td>
<td>95% CI</td>
</tr>
<tr>
<td>2002</td>
<td>1258</td>
<td>26.63</td>
<td>25.16-28.10</td>
</tr>
<tr>
<td>2003</td>
<td>1316</td>
<td>27.22</td>
<td>25.75-28.69</td>
</tr>
<tr>
<td>2006</td>
<td>1731</td>
<td>35.33</td>
<td>33.66-36.99</td>
</tr>
<tr>
<td>2008</td>
<td>1644</td>
<td>32.33</td>
<td>30.76-33.89</td>
</tr>
<tr>
<td>2009</td>
<td>1679</td>
<td>33.53</td>
<td>31.93-35.14</td>
</tr>
<tr>
<td>2012</td>
<td>1622</td>
<td>30.73</td>
<td>29.24-32.23</td>
</tr>
<tr>
<td>2013</td>
<td>1681</td>
<td>30.69</td>
<td>29.23-32.16</td>
</tr>
<tr>
<td>2014</td>
<td>1830</td>
<td>33.31</td>
<td>31.78-34.84</td>
</tr>
</tbody>
</table>

N – number; WASR – world age-standardized rate; CI – confidence interval
Figure 1.

*significant increase
Figure 2.

*significant increase
Table 1. Age-specific, age-standardised incidence rate (per 100,000 persons), crude rate and number of patients with primary non-melanoma skin cancer in Serbia, 1999–2015

Table 2. Age-standardised incidence rate (per 100,000 persons) and number of patients with primary non-melanoma skin cancer in Serbia, 1999–2015

Figure 1. – Joinpoint analyses of age standardized incidence rates (world standard population) of non-melanoma skin cancer in Serbia, 1999–2015, men and women combined, with annual percentage change (APC)

Figure 2. – Joinpoint analyses of age standardized incidence rates (world standard population) of non-melanoma skin cancer in Serbia, 1999–2015, with annual percentage change (APC), for women

Figure 3 – Joinpoint analyses of age standardized incidence rates (world standard population) of non-melanoma skin cancer in Serbia, 1999–2015, with annual percentage change (APC), for men

*significant increase

LEGENDS FOR ILLUSTRATIONS
REFERENCE

16. Housman TS, Feldman SR, Williford PM, Fl eischer AB Jr , Goldman ND, Acostamadiedo JM, et al. Skin cancer is among the most costly of all cancers to treat for