Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article MEDIASTINAL METASTASIS OF PRIMARY EXTRANEURAL EPENDYMOMA: CASE REPORT

UDC:

DOI: https://doi.org/10.2298/VSP181023181A

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
MEDIASTINAL METASTASIS OF PRIMARY EXTRANEURAL EPENDYMOMA: CASE REPORT

Autori: Bojana Andrejić-Višnjić *, Dragana Tegeltija†‡, Aleksandra Lovrenski†‡, Dejan Vučković†‡, Golub Samardžija†∥, Ljiljana Tadić Latinović §

* University of Novi Sad, Faculty of Medicine, Department of Histology and Embryology
† University of Novi Sad, Faculty of Medicine, Department of Pathology
‡ Department of pathoanatomical and molecular diagnostics, Institute for Lung Diseases of Vojvodina, Sremska Kamenica, Serbia.
∥ Institute for cardiovascular diseases of Vojvodina, Sremska Kamenica, Serbia.
§ Department of Pathology, University Clinical Center of the Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.

Corresponding Author: Bojana Andrejić-Višnjić, MD, PhD

Phone: 0631669300

e-mail: bojana.andrejic-visnjic@mf.uns.ac.rs

Addres: Medical Faculty (Dept. of Histology and Embryology), Hajduk Veljkova 3, 21000 Novi Sad
Abstract

Introduction. The rarity of primary extraneural ependymomas, its great variations in morphology and rare occurrence of metastasis, increase chances of misdiagnosis, particular if found in paraovarian localization. Case report. In presented case, onset of the disease was 14 years ago, when after right salpingo-oophorectomy, patient was diagnosed with malignant mesothelioma. In following years patient had multiple and extensive surgical procedures, resulting in different pathohistological diagnosis, and after seven years, a diagnosis of extraneural ependymoma was established. Later on, patient was surgically treated in several medical centers across the region, again with different pathohistological diagnosis. At present, tumor metastasized to mediastinum, presenting as grey to brown, multicystic formation, with cysts filled with clear serous fluid or red-brown hemorrhagic fluid. Inner surface of the cysts had smooth to partly papillary appearance. Tumor cells exhibited several architectural paterns (solid, pseudorosette or rosette formations, papillary and pseudopapilary structures), and immunophenotype specific for extraneural ependymoma (GFAP, ER, PR positive; calretinin, WT-1, S100, synaptophysin, chromogranin, CK7 and pan-cytokeratin negative). Conclusion. This case demonstrates not only specific and diagnostic immunophenotype of extraneural ependymoma, but above all an important principle in tumor pathology. Rare neoplasms may occur in unusual and unexpected primary and metastatic sites. Pathologists need to be familiar with histologic features of a wide range of neoplasms and not just the appearance of neoplasms within their own limited subspecialty area.

Key words: ependymoma, extraneural, mediastinum, metastases, glial fibrillary acidic protein, immunohistochemistry.

Introduction

Typical ependymomas are rare neuroepithelial tumors originating from the glial ependymal cells of the central nervous system (CNS). A vast majority of ependymomas occurring in adults are localized in the ventricles and spinal cord. Rarely, they occur outside the CNS (extraneural ependymomas, EnE), and even than mostly in close relationship with neural axis. The majority of primary EnE are seen in the sacrococcygeal subcutaneous tissue and paraovarian area, but they have also been reported in the extraovarian pelvic region and more infrequently in other sites 1, 2, 3, 4.

We report the case of a female patient presenting with a mediastinal metastatic deposit of primary EnE.

Case report

Case presentation and clinical course

Female patient, aged 41, has been admitted to the Institute for pulmonary diseases of Vojvodina due to a mediastinal tumor. Since the patient is a foreign national, initially treated in her country and other regional hospitals, the medical documentation was incomplete, and document of pathohistological examination was not available.
She gave anamnestic data that initial surgical procedure was right adnexectomy and reduction of tumor mass in pelvic cavity 14 years ago (when she was 27 years old), with pathohistological diagnosis of poorly differentiated malignant mesothelioma. Postoperatively she was treated with combined chemoterapy (Taxotera/CDDP protocol).

In 2005, at the age of 29, cyst of the left ovary was removed, pathohistologically diagnosed as a cyst of germinal epithelium, followed by chemotherapy (PEB protocol).

According to what she said, at the age of 34 (year 2010), “pseudocyst” from pelvic cavity was removed, and pathohistologically diagnosed as well differentiated ependymoma.

At the age of 36 (year 2012) tumorectomy of the left ovary mass and appendectomy were performed, with pathology confirming ependymoma metastasizing to appendix. In the same year due to multiple metastases she underwent extensive surgery: left adnexectomy, rectosigmoid resection by Hartmann's procedure, resection of terminal ileum and cecum, right hepatectomy, cholecystectomy, retroperitoneal lymphadenectomy, omentectomy, partial peritonectomy, resection of the right hemidiaphragm and tumorectomy for right pleural mass. Chemotherapy (Etoposid) was applied postoperatively.

Fine needle aspiration (FNA) of inguinal lymph nodes was performed a year later (2013), at the age of 37, with only reactive changes in lymph nodes in pathohistology. PET/CT scans in 2014 (age 38) revealed suspicious lymph nodes near internal mammary artery, which were sampled during video-assisted thoracoscopic surgery (VATS), with pathologically evident tumor metastases. At that time, tumor tissue was composed of medium sized atypical cells, with oval hyperchromatic nuclei, and focally prominent nucleoli. Immunohistochemical analysis showed AFP and D2-40 to be positive in all tumor cells, CD30, PLAP and CK19 were negative. Based on this immunofenotype, diagnosis of metastatic germ cell tumor was set.

Suspicious cystic mediastinal lesion was observed at PET/CT at the age of 40, (year 2016), and in control PET/CT in 2017, somewhat elevated activity/FDG accumulation SUVmaf=1.7 was observed in left paracardial area (all imaging analyses were done abroad, and images were not available to us after patient was sent home). After adequate preoperative procedures, VATS was used to identify and extirpate cystic lesion loosely attached to mediastinum, diaphragm and pericardium, while phrenic nerve was passing over the lesion. Material was sent to pathohistological analysis. The post-operative recovery was unremarkable, and the patient was discharged four days later.

Pathohistological findings

Material sent for pathohistological analysis was grey to brown tissue, lobulated and cystic in its macroscopic appearance, 8x4x2,5 cm large. On cross sections it was multicystic, with cysts filled with clear serous fluid or red-brown hemorrhagic fluid. Inner surface of the cysts had smooth to partly rough and papillary appearance.

Histological slides stained with hematoxylin and eosin (HE) revealed cystic tumor composed of oval, spindle to polygonal tumor cells, with scant clear or light eosinophilic cytoplasm (Figure 1). Nuclei were oval, round and spindle shaped, hyperchromatic, with marked pleomorphism and atypia. Some nuclei had granular chromatin (“salt&peper”). Mitoses were rarely present (2 per 10 high power fields). Cell borders were poorly defined. Tumor cells exhibited different architectural patterns: solid, pseudorosette or rosette formations, papillary and pseudopapillary stuctures. Cystic spaces were filled with eosinophilic amorphous material and erythrocytes. Neither necrosis nor vascular invasion
was observed. Based on patient’s anamnestic data and histological appearance of the tumor, additional immunohistochemical analysis was indicated. Tumor cells showed strong glial fibrillary acidic protein (GFAP) immunoreactivity, as well as estrogen and progesterone receptor (ER, PR) immunoreactivity (Figure 2). Less than 5% of cells showed positive Ki-67 nuclear staining (Figure 2). Tumor cells were negative for calretinin, WT-1, S100, synaptophysin, chromogranin, CK7 and pan-cytokeratin staining.

Discussion

Typical ependymomas behave in an indolent, slow-growing manner. While generally behaving in a benign clinical fashion, they possess capacity for localized tumor recurrence and tumor dissemination through cerebrospinal fluid with metastases has been known to occur. EnE appear to behave in a similar fashion, but there is a potential for malignant clinical behaviour, although it appears to be an uncommon occurrence. In presented case, onset of the disease was 14 years ago, and since that time she has had multiple and extensive surgical procedures, due to metastatic spread.

While sacrococcygeal ependymomas are equally distributed among males and females, paraovarian pelvic and extra pelvic ependymomas have been exclusively reported in women, mainly of child bearing age. However, there was a case of a 75-year-old patient with pelvic EnE. This reported gender and age related predominance is supported by numerous case reports, and is in accordance with our patient’s gender and age. Initially, her disease was diagnosed when she was 27 years old, but at that time, the diagnosis was malignant mesothelioma. Since we do not have medical reports and histological slides, we can only doubt that it was also an EnE. Similar case was described by Verdun et al: female patient operated for upper right quadrant tumor, presumed to be metastatic pancreatic tumor, but postoperatively diagnosed as mesothelioma. Two years later, she developed recurrent tumor that was localized in pelvic region. At that time tumor samples were reviewed and with the aid of immunohistochemistry the diagnosis was corrected to EnE.

Ependimomas of CNS have distinct histology characterized by perivascular pseudorosettes, true ependymal rosettes, and fibrillary areas. In contrast, primary EnE have been described as having a wider range of microscopic architecture: perivascular pseudorosettes and occasionally true ependymal rosettes, along with mixtures of solid, macrocystic, microcystic, pseudopapillary, papillary, trabecular, and cribriform architectures.

It is observed that EnE and ependimomas of CNS beside different clinicopathologic features, differ in immunophenotypical features as well. It may point to either a derivation from different precursors or differentiation along different pathways. Different origin and development, immunophenotipical features and highly variable histology of EnE is at the same time a cause of many diagnostic errors. The EnE are thought to be derived from embryonal rests in the paracoccygeal area, but there is also hypothesis that the pelvic ones might be arising from ectopic glial cells or might be neometaplasia of the peritoneal mesenchymal tissue. Another hypothesis proposes that some extraspinal ependymomas arise from germ cells and germ cell tumors (teratomas) and may therefore account for ependymomas arising in the ovary, parametrium, and anterior mediastinum.

Idowu et al. studied and compared primary central nervous system ependymomas to EnE. Although both types stain positive for GFAP, they found several
immunohistochemical differences, with EnE most likely positive for cytokeratins: 34betaE12 (60% vs 0%), CK18 (100% vs 20%), CAM 5.2 (60% vs 10%), CK7 (80% vs 10%). Estrogen and progesterone receptors are also strongly and diffusely positive in a majority of EnE (ER: 100% vs 10%; PR: 80% vs 20%) compared with CNS ependymomas that show weak and focal staining for these receptors in a minority of cases. CD99 and S100 are more commonly positive in CNS ependymomas than in their extraneural counterparts. This immunophenotype stated by Idowu, is present in all published cases of EnE, and it confirms the hypothesis that EnE arise by different mechanisms from their CNS counterparts. However, it appears that EnE arising in different places or mechanisms, show different immunoprofile. A case of ependymoma arising from mature cystic teratoma was published by Stolnicu et al. and it showed immunofenotype of EnE, but it was markedly different from other EnE.

In our case, ovaries were affected by disease, and on one occasion even diagnosed as AFP positive germ cell tumor. Similar case was presented by Garcia-Barriola et al, when a 30-year-old woman was given an erroneous diagnosis of poorly differentiated carcinoma of the ovary. The patient presented pelvic pain for one year prior to surgery. A second laparotomy revealed a bilateral pure ovarian ependymoma that infiltrated the uterus and presented implants on the omentum. Differential diagnosis included mainly endometrioid and small cell carcinoma of the ovary, but presence of typical ependymal rosettes and positivity to GFAP confirmed the diagnosis of ependymoma. Data on AFP expression in EnE are rare, precisely we have found only one case mentioning negative AFP expression in pelvic EnE. This may be the cause for debate on origin of the primary tumor, but it also emphasizes the importance of comprehensive and thorough differential diagnostic in cases of ovarian lesions. Chances of misdiagnosing EnE of ovarian localization are high, particularly since they may show papillary areas with psammoma bodies, pseudofollicles, trabeculae, microcysts and other patterns resembling struma ovarii, granulose cell, Sertoli-Leydig cell, serous and wolffian tumors. Therefore, diagnoses made in 2005 (cyst with granulosa cells) and 2014 (metastatic germ cell tumor) could be questioned.

We were able to do some additional immunohistochemistry on the tissue sample diagnosed as AFP positive germ cell tumor metastasis, so we applied GFAP staining. Tumor tissue showed moderate GFAP positivity, which confirmed our suspicions regarding the previous diagnosis. Indeed, it was a metastasis of primary, AFP positive EnE.

Besides differentiating primary neural from extraneural ependymoma, metastatic carcinoids and primitive neuroectodermal tumor should be considered as differential. As EnE can appear in liver, lung, small intestine, omentum and even endometrium, this entity should also be kept in mind in the differential diagnosis of a primary or metastatic carcinoma with papillary or pseudopapillary structures. Although our case was not positive with any of the keratin antibodies, it should be borne in mind that ependymomas may express cytokeratins and may be misdiagnosed as metastatic carcinoma. In such cases if the morphologic pattern raises suspicion to EnE, GFAP staining will be a helpful diagnostic tool.

Conclusion

This case demonstrates not only diagnostic immunophenotype of EnE, but above all an important principle in tumor pathology. Neoplasms may rarely occur in unusual and unexpected primary and metastatic sites. Pathologists need to be familiar with histologic
features of a wide range of neoplasms and not just the appearance of neoplasms within their own limited subspecialty area. Correct diagnosis may be achieved by tumor pattern recognition on initial routine slides followed up by confirmatory immunostains.

Acknowledgments
This manuscript was supported by the Ministry of Education, Science and Technical Development of the Republic of Serbia (grant No 41012).

References

Fig. 1– Photomicrographs of tumor tissue: A – solid and cystic areas; cysts filled with eosinophilic amorphous material and erythrocytes (HE, 40x); B - oval, spindle and polygonal tumor cells, with scant clear or light eosinophilic cytoplasm, with pseudorosette or rosette formations (HE, 100x).
Fig. 2 – Immunophenotype of the tumor: A – GFAP, 40x; B – ER, 100x, C – PR, 100x; D – Ki67, 100x.

Received on October 23, 2018.
Accepted on October 31, 2018.
Online First November, 2018.