UNILATERAL, FRONTAL POLYMICROGYRIA AND SUPRATENTORIAL WHITE MATTER MICROCYSTS IN FETUS WITH JOUBERT SYNDROME AND RELATED DISORDERS: PRENATAL DIAGNOSIS WITH MAGNETIC RESONANCE IMAGING

Katarina Koprivšek *†, Mladen Bjelan *†, Miloš Lučić *†, Olivera Šveljo ** Dejan Kostić §, Duško Kozić *†, Vojnosanitetski pregled (2018); Online First October, 2018.

UDC:

DOI: https://doi.org/10.2298/VSP180906173K

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
UNILATERAL, FRONTAL POLYMICROGYRIA AND SUPRATENTORIAL WHITE MATTER MICROCYSTS IN FETUS WITH JOUBERT SYNDROME AND RELATED DISORDERS: PRENATAL DIAGNOSIS WITH MAGNETIC RESONANCE IMAGING

UNILATERALNA FRONTALNA POLEMIKROGIRIJA I MIKROCISTE SUPRATENTORIJALNE BELE MASE U FETUSA SA ZNACIMA JOUBEROVOG SINDROMA I POVEZANIH BOLESTI: PRENATALNA DIJAGNOZA MAGNETNO REZONANTNIM SNIMANJEM

Katarina Koprivšek * †, Mladen Bjelan * †, Miloš Lučić * †, Olivera Šveljo ** Dejan Kostić ‡ §, Duško Kozić * †

University of Novi Sad, *Faculty of Medicine, ** Faculty of Technical Sciences, Novi Sad, Serbia; Institute of Oncology of Vojvodina †Diagnostic Imaging Centre, Sremska Kamenica, Serbia; Military Medical Academy, ‡Institute of Radiology, Belgrade, Serbia; University of Defence, §Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia.

Correspondence to: Mladen Bjelan, Faculty of Medicine, University of Novi Sad; Diagnostic Imaging Centre, Institute of Oncology of Vojvodina, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia; Phone: +381214805605; E- mail: mladen.bjelan@mf.uns.ac.rs
Abstract

Introduction. Joubert syndrome and related disorders (JSRD) are a group of rare multiple congenital anomalies syndromes, defined by complex midbrain-hindbrain malformation that creates the “molar tooth sign” (MTS) on brain imaging and may be associated with multisystem organ pathology, mainly of the retina, kidneys, liver and skeleton. Prenatal diagnosis of JSRD has proved difficult because of the rarity of the condition and low sensitivity of ultrasound in evaluation of the fetal posterior fossa (PF) in most affected fetuses. Case report. We present an unusual case of JSRD, pure Joubert syndrome with unilateral frontal polymicrogyria and supratentorial white matter microcysts, diagnosed by magnetic resonance imaging (MRI), in fetus aged 30 gestational weeks. The distinctive MRI features of this rare ciliopathy were confirmed by 6-months postnatal MRI study. The postnatal outcome was poor; clinical follow-up in first 6 months of life confirmed hypotonia, developmental delay, oculomotor apraxia and seizures. Conclusion. To the best of our knowledge, fetal MRI features of the coexistence of pure JS and supratentorial abnormalities leading to postnatal cerebellar disfunction and epilepsy, have never been reported before. Presented case may contribute to the broadening of the spectrum of sparse prenatal features of JRSD, and support the stand that presence of neuronal migration abnormalities can affect the clinical outcome and prognosis of fetuses with JSRD.

Apstrakt

Introduction

Joubert syndrome and related disorders (JSRD) are a group of rare developmental, multiple congenital anomalies syndromes, defined by complex midbrain-hindbrain malformation that creates the “molar tooth sign” (MTS) on brain imaging, associated with variable multiorgan pathology, mainly of the retina, kidneys, liver and skeleton. (1) MTS describes
hypoplastic vermis, narrow mesencephalic isthmus, deep interpeduncular fossa and thick horizontally placed superior cerebellar peduncles, with consequent midline cerebellar cleft and dysmorphic fourth ventricle. The incidence of JSRD ranges between 1/80,000 and 1/100,000 live births, although these figures may represent an underestimate. (2) JSRD is thought to be part of ciliopathies, genetic disorders related to the disturbed development of primary cilia, organelles that play key roles in the development and functioning of retinal photoreceptors, neurons, kidney tubules and bile duct. JSRD are transmitted in autosomal recessive fashion, with the exception of rare cases following X-linked recessive inheritance. (3) JSRD are clinically heterogenous; the characteristic features include hypotonia, ataxia, oculomotor apraxia, neonatal breathing dysregulation, developmental delay associated with variable multiorgan pathology. Based on the main organ involvement and genotype-phenotype correlates, JSRD are classified in six phenotypic subgroups: pure JS and JS with ocular, renal, oculorenal, hepatic and orofaciiodigital defects. (1,2) Since the first Gleeson`s report in 2004, only five cases of JRS associated with neuronal migration anomalies have been described, but only based on postnatal imaging and/or autopsy findings. (4,5) A single case of white matter cyst in JRSD detected by MRI was described by Senocak. (5) To the best of our knowledge, prenatal imaging features of JSRD were described in the literature in only 17 fetuses, mostly examined by US. (6) In all available prenatal imaging studies, MTS was noted as isolated finding, not a single case in conjunction with associated brain anomalies. We describe a unique JSRD case and fetal MRI features of the coexistence of MTS, cortical polymicrogyria (PMG) and white matter cyst.

Case report

A 37-year-old woman, (grav 2, para 1) with no relevant medical history, was referred to MRI unit, at 30 weeks of uneventful pregnancy, after previous US exam, performed two weeks earlier, suggested forth ventricle enlargement and vermian abnormality, as isolated findings. Fetal brain MRI was performed on a 1.5T unit, with 3mm thick half Fourier single-shot fast spin-echo (760/104/1; TR/TE/excitations) T2-weighted images obtained in 3 reference planes. The fetal MRI study revealed MTS with vermian hypoplasia, bilateral horizontally-oriented and slightly thicker superior cerebellar peduncles and deepened interpeduncular fossa. The forth ventricle was enlarged, with abnormally rounded fastigium. There were no abnormal MR imaging findings related to the PF size and cerebellar hemispheres. In the right frontal lobe, the gyral /sulcal pattern was abnormal with multiple irregular, shallow, cortical infoldings, consistent with polymicrogyria. Frontal white matter was slightly hyperintense with scattered punctiform zones, with signal intensity resembling CSF. There were no abnormal MR imaging findings related to the cortex in the left cerebral hemisphere (Fig. 1. A-D). Based on a presumptive diagnosis of JSRD, the parents were counseled, that the fetus had a complex rombencephalic developmental abnormality combined with neuronal migration disorder, with expected developmental impairments and high risk of epilepsy. Due to religious beliefs, the family decided to continue the pregnancy. A male neonate was born at 39 gestational weeks, via uncomplicated spontaneous vaginal delivery. At first day of life neonate manifested apnea spells and hypotonia, accompanied with oculomotor apraxia and seizures in the form of epileptic spasms. Physical examination at birth was unremarkable. Karyotype testing has not revealed chromosomal abnormalities,
unfortunately, genetic testing (whole exome sequencing and/or targeted panels) was not performed. Clinical assessments in the following six months of age, revealed aggravation of cerebello-ocular symptoms, an increase in number of epileptic attacks and significant developmental delay. Despite neurological deterioration, infant’s respiratory abnormalities progressively improved with age, disappearing around the beginning of fourth month. An abnormal interictal EEG was recorded at six months, with electroencephalographic pattern of focal frontal spikes in the right central frontal region.

Postnatal brain MR scan was obtained at 6 months of life, by using the same system of the prenatal studies. The MR study confirmed prenatal MRI diagnosis; MTS was present with pathognomonic appearance, associated with midline cerebellar cleft in the place of the hypoplastic vermis, deep interpeduncular fossa and enlarged, “bat wing” shaped fourth ventricle on the axial scans. The unilateral PMG in the entire right frontal lobe was confirmed, without the gradient of severity in AP direction. Supratentorial white matter had slightly increased signal intensity on T2 sequence, suggestive of mild myelination delay. Multiple white mater microcysts were detected in frontoparietal regions bilaterally, more pronounced on the right side. Supratentorial ventricles, corpus callosum, basal ganglia and the cerebral cortex in the left hemisphere, appeared to be normal. (Fig. 1.E-H).

Discussion

Prenatal diagnosis of JSRD has proved difficult because of the rarity of the condition, the US limitations in evaluation of the fetal posterior fossa and the relatively nonspecific US features reported in most affected fetuses. (6,7) The prenatal diagnosis of JSRB could be suspected in all fetuses with US findings of abnormal cerebellar vermis, either as isolated findings or associated with additional central nervous system or multisystem malformations. On the US scans of the fetal posterior fossa, MTS frequently remains unrecognized or overlooked. In our opinion, low sensitivity of US in detection of MTS could be caused by technique’s inability to obtain clear transversal posterior fossa scans, perpendicular to clival line at the level of the pontomesencephalic junction.

Although MRI overcomes disadvantages of US in evaluation of the fetal rhombencephalon, its sensitivity in JSRD has not been systematically evaluated. Fetal MRI reports of JSRD are scarce and they do not reflect disease heterogeneity, describing only posterior fossa abnormalities. MTS was not detected in two of eight reported cases; Doherty and colleagues reported only vermian hypoplasia, without being able to demonstrate MTS. (8) We agree with current opinions that for fetal diagnosis of MTS, all pathological elements should be visualized on MRI scans and that coronal planes are dedicated for visualization of cerebellar cleft, axial planes for midbrain isthmus and fourth ventricle. (9) But, according to our study, fetal morphology of horizontalized and thickened superior cerebellar peduncle is better displayed in sagittal rather than in recommended axial plane.

It is not expected that MTS, as the neuroradiological hallmark of JSRD, changes its appearance, but according to Porreti, rhombencephalic abnormalities could exhibit different degrees of hypoplasia or dysplasia (mild, moderate, severe). (10) This can partially explain why mild forms of JSRD could be overlooked or misdiagnosed as isolated vermian hypoplasia or malformation from the Dandy-Walker spectrum. In order to enhance fetal MRI accuracy in diagnosing of JSRD, Sallem proposed quantification of morphologic changes at pontomesencephalic junction by measurements of anteroposterior (AP) diameters of interpeduncular fossa, isthmus and forth ventricle and calculation of the ratio
of AP diameters. (11) The reliability of the obtained parameters is not statistically verified. It is calculated in three cases, and we still do not know the normative values for healthy fetuses at different gestational age.

Although prenatally diagnosed infratentorial malformations in JSRD have been described sporadically in the radiological literature, coexisting supratentorial structural brain abnormalities were not reported at all. (8,11) It is possible that lack of data on supratentorial abnormalities is caused by moderate sensitivity of fetal MRI in detecting disorders at an early gestational age (less than 26 gestational weeks) and low conspicuity of the supratentorial abnormalities in JSRD affected fetuses (e.g. hippocampal malrotation, mild midline defects, hypothalamic hamartomas and malformations of cortical development). According to our best knowledge, this is the first reported case of fetal JSRD with neuronal migration anomalies as associated supratentorial malformation. (12) Even though, our case is specific not only due to PMG being unilateral and exclusively localized in the frontal lobe, which sets it apart from two previously published pediatric cases of JS with bilateral, mostly perysylvian malformation, but due to the fact, that it is associated with delayed myelination and white matter cysts. (13) It is also of note, that the prenatally diagnosed right frontal lobe lesion represents a focal epileptic zone in concordance with postnatal seizure semiology and EEG findings. Unfortunately, clinical and imaging diagnosis in our patient was not confirmed by genetic/molecular data. According to Vilboux group causative gene could be identified in 94% of JSRD patients, with significant genotype/phenotype correlation and high percent of unique potentially pathogenic gene variants linked to unusual clinical/imaging JSRD cases. (14)

Conclusion

Presented case supports the claim that JSRD should be considered as a highly heterogeneous malformation, with a variable degree of severity and clinical outcome. The prenatal MRI has to be mandatory part of prenatal diagnostic algorithm in fetuses with suspected JSRD, to confirm posterior fossa anomalies and detect the presence of associated supratentorial abnormalities. Presented MRI features contribute to the broadening of the prenatal neuroimaging spectrum, and could aid in prenatal prediction as to which JSRD affected fetus could develop epileptic seizures in the postnatal period.

References:

Figure legend:
Figure 1. Fetal and postnatal MRI features of JSRD with unilateral polymicrogyria and white matter microcysts.
Midline sagittal T2W image (A) in a 30-week old fetus shows vermian hypoplasia, an enlarged forth ventricle with abnormally rounded fastigium, and horizontalized and thickened superior cerebellar peduncles. Axial T2W image (B) at the level of pontomesencephalic junction reveals deep interpeduncular fossa and dysmorphic fourth ventricle suggestive of MTS. Axial T2W scan, at a supraventricular level (C), shows the abnormal gyral and sulcal pattern in the right frontal lobe, consistent with polymicrogyria. Note the hyperintense signal of the supratentorial white matter, with scattered punctiform zones, resembling CSF signal intensity (F). Postnatal brain MR images in sagittal (E), axial (F, G) and coronal planes (D), obtained at 6 months of life show presence of dysmorphic rhombencephalon, unilateral, frontal polymicrogyria, white matter microcysts and delayed myelination.
Fig. 1 – Fetal and postnatal MRI features of JSRD with unilateral polymicrogyria and white matter microcysts.
Midline sagittal T2W image (A) in a 30-week old fetus shows vermian hypoplasia, an enlarged forth ventricle with abnormally rounded fastigium, and horizontalized and thickened superior cerebellar peduncles. Axial T2W image (B) at the level of pontomesencephalic junction reveals deep interpeduncular fossa and dysmorphic fourth ventricle suggestive of MTS. Axial T2W scan, at a supraventricular level (C), shows the abnormal gyral and sulcal pattern in the right frontal lobe, consistent with polymicrogyria. Note the hyperintense signal of the supratentorial white matter, with scattered punctiform zones, resembling CSF signal intensity (F). Postnatal brain MR images in sagittal (E), axial (F, G) and coronal planes (D), obtained at 6 months of life show presence of dysmorphic rhombencephalon, unilateral, frontal polymicrogyria, white matter microcysts and delayed myelination.

Received on September 6, 2018.
Revised on October 9, 2018.
Accepted on October 12, 2018.
Online First October, 2018.