Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the *Vojnosanitetski Pregled*. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year) , the DOI.

Please cite this article PHYSICAL THERAPY IMPROVES MOTION IN A PATIENT WITH INCLUSION BODY MYOSITIS – A CASE REPORT

FIZIKALNA TERAPIJA POBOLJŠAVA KRETANJE KOD PACIJENATA SA MIOZITISOM PRAĆENIM INKLUZIONIM TELIMA - PRIKAZ SLUČAJA

UDC:

DOI: https://doi.org/10.2298/VSP171110165S

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
PHYSICAL THERAPY IMPROVES MOTION IN A PATIENT WITH INCLUSION BODY MYOSITIS – A CASE REPORT

FIZIKALNA TERAPIJA POBOLJŠAVA KRETANJE KOD PACIJENATA SA MIOZITISOM PRAĆENIM INKLUZIONIM TELIMA - PRIKAZ SLUČAJA

Jelena Stevanović*, Maja Vulović†, Danijela Pavićević§, Mihailo Bezmarević||, Andjelka Stojković¶, Aleksandar Radunović**, Miljana Aksić††, Bojan Milosević‡‡, Aleksandar Čvetković§§, Milan Jovanović||| and Anita Ivošević***

Affiliations

* Department of Physical medicine and rehabilitation, Faculty of Medical Sciences, University of Kragujevac, Serbia
† Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, Serbia
‡ Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
§ Department of Physical medicine and rehabilitation, Clinical Center of Kragujevac, Serbia
|| Clinic for General Surgery, Military Medical Academy
¶ Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Serbia
** Clinic for Orthopedic Surgery, Military Medical Academy, Belgrade, Serbia
†† Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
‡‡ University of Kragujevac, Faculty of Medical Sciences, Department of Surgery, Kragujevac, Serbia
§§ Clinical Center Kragujevac, General and Thoracic Surgery Department, Kragujevac, Serbia
||| Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
*** Department of Internal medicine, Faculty of Medical Sciences, University of Kragujevac, Serbia

1Equally contributed first author

Corresponding author:
Maja Vulović
Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
E-mail: maja@medf.kg.ac.rs
Cell Phone: + 381 61 72 36 403

Authorship contribution
Jelena Stevanović, Maja Vulović, Anita Ivošević, Miljana Aksić developed the study, reviewed literature, analyzed data and wrote one part of the manuscript. Andjelka Stojković, Aleksandar Radunović, analyzed data and wrote one part of the manuscript. Aleksandar Čvetković, Mihailo Bezmarević, Bojan Milosević, Milan Jovanović reviewed the literature and wrote one part of the manuscript. Danijela Pavićević collected data, developed the study, analyzed data and wrote one part of the manuscript.
Abstract

Introduction. Inclusion body myositis (IBM) is a rare form of inflammatory myopathy with a slowly progressive course. It is manifested by early weakness and atrophy of skeletal muscles, especially forearm muscles and the quadriceps. At the very beginning of disease, clinical symptoms are not pronounced, therefore it is difficult to diagnose. A case report. A forty-eight-year-old female patient visited her doctor due to the weakness of muscles in arms and legs. Five years prior to this she was treated by a neurologist and a physiatrist on several occasions with different diagnoses for progressive muscle weakness. During the last hospitalization, IBM was diagnosed after the muscle biopsy findings. After the diagnosis, the patient underwent intensive physical therapy in order to preserve the ability to independently perform everyday activities and stable of walk. Conclusion. IBM is a rare clinical entity which often takes several years to be diagnosed. Progressive muscle weakness in elderly should point to possible IBM diagnosis, which is only confirmed by muscle biopsy. Physical therapy has a significant role in the treatment as it leads to improvement of functional abilities of the patients in their daily activities, thus reducing the degree of disability.

Key words: biopsy, inclusion bodies, myositis, muscle weakness, physical therapy.

Apstrakt

Ključne reči: biopsija, inkluziona tela, miozitis, mišićna slabost, fizikalna terapija.
Introduction

Inclusion body myositis (IBM) is a rare clinical entity which is classified in the group of idiopathic inflammatory myopathies\(^1,2\). It is a complex disorder of the unknown etiological cause, but genetic, immunological and environmental factors are considered to have significant influence in the development of the disease. Numerous studies have hypothesized that IBM may be an autoimmune inflammatory muscle disorder. The lack of the adequate response to the administration of conventional therapeutic modules which are used in the treatment of autoimmune diseases points to the role of other factors in the pathogenesis of this disorder\(^3,4\). It is thought that IBM is closely connected to both autoimmune and degenerative processes. Degenerative processes occur in muscle tissue by forming vacuoles, the so-called “inclusion bodies” which are the clusters of various unfolded or misfolded proteins. For this reason, it was long believed that IBM was a degenerative disease of muscle tissue\(^5\). However, recent research has shown that viral infection could be a trigger which induces abnormal response of the immune system and contributes to the development of IBM\(^6\). Also, some people have genetic predisposition for this disease\(^7\).

IBM is characterised by chronic, progressive weakness and atrophy of skeletal muscles, especially distal parts of the upper and proximal parts of lower extremities, sometimes followed by the weakness of facial muscles and dysphagia\(^2,8\). Since muscle weakness is the main clinical symptom, the diagnosing of IBM often lasts for a long time due to rare occurrence of the disease. Pathological-histological confirmation of the existence of inclusion bodies in skeletal muscles is the fundamental diagnostic procedure. The lack of adequate pharmacological therapy for the IBM patients together with the progressive course of the disease reduces the performance of everyday activities and leads to disability and restricted movability\(^1,2,6,9\).

The aim of this paper is to point to the possibilities of occurrence of this disease in the patients with long-lasting muscle weakness, as well as emphasize the necessity of muscle biopsy as a fundamental diagnostic indicator. We also demonstrate the significance of physical therapy as the main treatment of the disease.

Case report

A forty-seven-year-old female patient visited a neurologist at Clinical Centre in Kragujevac for the first time in 2011 for the weakness in arm and leg muscles, which first appeared eight months before. Electromiography (EMG) and nerve conduction studies neurography (NCS) were done and showed moderate to moderately strong demyelination polyneuropathy in the lower and upper extremities, which resembled the findings after acute inflammatory demyelination polyneuropathy (AIDP). The physical therapy, electrical therapy and kinesiotherapy were administered, which considerably improved general status; general motor strength (GMS) was also improved so that the patient was significantly more stable while moving.

In 2012 and 2013, the patient was hospitalized at Clinics of Neurology and Physical Medicine, Clinical Centre Kragujevac twice each year due to the weakness in upper and lower extremities and impaired general condition with various diagnoses: sensorimotor
polyneuropathy, status post ADIP and leukoencephalopathy. Each hospitalization at the Rehabilitation Centre lasted for twenty-one days. The treatment was conducted daily, six days per week. Kinesiotherapy programme included the exercises of diaphragm breathing, the exercises for thorax expanding, active exercises for maintaining general mobility, exercises for coordination of movement and when changing from lying to sitting position. Kinesiotherapy was conducted for the duration of 40-45 minutes. During each hospitalization the functional abilities of the patient were evaluated by the Health Assessment Questionnaire (HAQ). At the first hospitalization, the value of HAQ score was 1, which pointed to slight decrease in functional abilities during everyday activities (moderate disability). Manual muscle test (MMT) was done at each hospitalization and had the values of –4/5 for the upper extremities (UE), and –3/5 for the lower extremities (LE). EMG and NCS showed significant worsening in relation to the ones, done in 2011. Magnetic resonance imaging (MRI) of the brain and cervical and lumbosacral spine showed old three lacunar infarctions in the right parietal lobe. Anosmia was diagnosed during the examination of an allergologist. In addition, ergometric tests were done, showing low probability for cardiovascular disease; however, it should be noted that the test was not properly done due to the patient’s incorrect walk, “leg shuffling”. The analysis of cardiolipin total antibodies (IgG, IgA, IgM) was negative. All laboratory parameters were within the limits of reference values. After each hospitalization, rehabilitation treatment was indicated, combined with physical therapy in ambulatory and spa conditions, which led to better and more reliable motions of the patient.

In 2014 and 2015, the patient was hospitalized several times at the Daily Hospital and at the Clinics for Neurology at the Clinical Centre Kragujevac with the following diagnoses: paraparesis flaccida, polyneuropathy specifica and Guillain-Barre syndrome. The examination of the cerebrospinal fluid revealed normal fluid composition. Laboratory and serological analyses could not specifically indicate the existence of Guillain-Barré syndrome, but the clinical picture gave rise to suspicion, and high creatine kinase values indicated the possibility of paraparesis flaccida or polyneuropathy specifica. Hypotrophy of the mimic muscles with light reduction of mimic movements was diagnosed together with a slightly dysarthric speech, reliance on help in changing position from sitting to standing, as well as the hypotrophy of all muscles of upper and lower extremities. The administration of immune globulin IgG-7S i.v. 25 g, did not lead to any improvement. The patient was treated with physical therapy (stable galvanization, electrical stimulation, magnetic therapy, diadynamic currents); kinesiotherapy treatment was conducted in order to reinforce global muscle strength (GMS) and improve walking coordination. HAQ questionnaire was 1, MMT for UE was 3/5, while for LE was 2-3/5. The findings of dual energy X-ray absorptiometry (DEX) of the neck and femur, T-score was -1.1, and regions L1-L4 showed osteopenia.

During the last hospitalization at the Clinic of Neurology (Clinical Centre Kragujevac) in September 2016, muscle biopsy showed IBM. A histological finding showed the presence of muscles of altered architecture with clearly visible necrosis and myofagocytes, due to the presence of inflammatory infiltrates. Inflammatory infiltrate was of the dominant T-lymphocyte type (CD4+, CD8+), with numerous histiocytes and CD8+ lymphocytes invading non-necrotic fibers. Both types of fibers were presented with elements of group atrophy, indicating moderate lesion. In many fibers the presence of rimmed vacuoles was observed (Fig. 1), fibers without COX activity were present, the expression of the MHC I
class of antigens in the inflammation zone, but also in fibers that are not necrotic, was amplified.

After IBM was diagnosed, the patient was hospitalized at Centre for Physical Medicine and Rehabilitation, Clinical Centre Kragujevac, where she was administered physical therapy (stable galvanization, transcutaneous electro neural stimulation, diadynamic currents, kinesiotherapy program) and functional testing. MMT was conducted for UE and LE which showed the values of -3/5 and -2/5, respectively. The value of HAQ questionnaire was 2, which points to severe disability (Fig. 2). During the latter hospitalization, the weakness of body flexors and difficulties with motion in bed were noticed together with difficulties in standing up from the chair; however, the patient walked alone on flat surface with the help of a stick with four bottoming points; kinesiotherapy treatment was conducted in patient’s room under the supervision of the therapist with daily exchange of tension and pulsation, since exertion had to be dosed during active exercises. At home, kinesiotherapy included active exercises for general motion and walking on flat surface 2 x 60 minutes, with occasional breaks.

Discussion

IBM is a rare disease, which more often appears in male in comparison to female population aged over 50, with the ratio 3:1. The frequency of the disease is from 0.001% for those aged less than fifty years to about 0.005% for those aged over fifty. Because of such a low frequency and rare occurrence, several years usually pass before the disease is diagnosed, as was the case with our patient. IBM is characterized by progressive muscle weakness of distal upper extremities and proximal lower extremities for more than a year in the patients aged over 35, and a normal or moderately increased values of creatine phosphokinase (CPK). In our patient, muscle weakness was a predominant symptom which worsened overtime. In addition to these symptoms, the patient had diagnoses of anosmia and osteopenia, which have been described in other patients with idiopathic myositis. The crucial parameter to confirm the diagnosis of this disease is a muscle biopsy, which was, in our case, performed 5 years after the onset of muscle weakness.

Pharmacological therapy has a very small influence on a progressive course of IBM in comparison to other inflammatory myopathies, thus the patients lose the capacity to perform everyday activities and most often end up in a wheelchair 10-15 years after the onset of disease. In our patient, the administration of immunoglobulins did not lead to any improvement, while the muscle weakness progressed, so she could walk only with the help of aids. The aim of physical therapy was to maintain the function and mobility in all joints, thus providing independent mobility as long as possible. At first, the application of physical therapy in IBM was considered contraindicated due to possible increase of inflammatory process in muscles, but later studies pointed to its significance in muscle strength improvement, endurance and increase of functional abilities of the patient related to movement. After the administration of physical therapy in several cycles, general condition of our patient has improved (Fig.3). Mobility was made easier and extremity muscles were slightly strengthened. Her walk was more stable, which improved the quality of her life.
Conclusion

IBM is a rare disease which is often diagnosed after many years. Progressive muscle weakness should point to possible doubt about IBM, which is only confirmed by muscle biopsy. Physical therapy plays a significant role in the treatment of IBM, since it leads to improvement of the functional capacity of patients in daily activities, thus reducing their disability.

Acknowledgements:
This study was supported by grant III41020 from the Ministry of Science and Environmental Protection of the Republic of Serbia.

References

Fig. 1 – Micrography with histological image of the muscle biopsy. A. Myophagocytosis shown on the modified Gomori trichrome staining 10x, B. The presence of a vacuole (arrow), Gomori trichrome staining 40x.
Fig. 2 – The graph shows the effect of physical therapy for a period of 2012 - 2016 in IBM measured by HAQ and MMT.
Fig.3 – Presentation of the patient after the disease was diagnosed. A. Distal parts of upper extremities before physical therapy and B. after physical therapy.

Received on November 10, 2017.
Revised on February 11, 2018.
Revised on October 17, 2018.
Accepted on October 17, 2018.
Online First October, 2018.