Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article: COMPARATIVE CLINICAL EVALUATION OF THE THERAPEUTIC EFFECTS OF LOW-LEVEL LASER AND HYALURONIC ACID ON GINGIVITIS CATARRHALIS IN CHILDREN

KOMPARATIVNA KLINIČKA EVALUACIJA TERAPIJSKIH EFEKATA LASERA MALE SNAGE I HIJALURONSKE KISELINE NA KATARALNI GINGIVITIS KOD DECE

Authors Igić Marija*, Kesić Ljiljana†, Obradović Radmila†, Filipović Gordana‡, Stojković Branislava*, Todorović Kosta||Vojnosanitetski pregled (2018); Online First July, 2018.

UDC:

DOI: https://doi.org/10.2298/VSP171207118I

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
KOMPARATIVNA KLINIČKA EVALUACIJA TERAPIJSKIH EFEKATA LASERA MALE SNAGE I HIJALURONSKE KISELINE NA KATARALNI GINGIVITIS KOD DECE

COMPARATIVE CLINICAL EVALUATION OF THE THERAPEUTIC EFFECTS OF LOW-LEVEL LASER AND HYALURONIC ACID ON GINGIVITIS CATARRHALIS IN CHILDREN

Igić Marija*, Kesić Ljiljana†, Obradović Radmila†, Filipović Gordana‡, Stojković Branislava*, Todorović Kosta||

*Univerzitet u Nišu, Medicinski fakultet, Klinika za stomatologiju, Odeljenje za Preventivnu i dečju stomatologiju

†Univerzitet u Nišu, Medicinski fakultet, Klinika za stomatologiju, Odeljenje za Oralnu medicinu i parodontologiju

‡Univerzitet u Nišu, Medicinski fakultet, Klinika za stomatologiju, Odeljenje za Orthodontiju

||Univerzitet u Nišu, Medicinski fakultet, Klinika za stomatologiju, Odeljenje za Oralnu hirurgiju

*University of Nis, Medical Faculty, Dental Clinic, Department of Preventive and Children Dentistry

†University of Nis, Medical Faculty, Dental Clinic, Department of Oral Medicine and Periodontology

‡University of Nis, Medical Faculty, Dental Clinic, Department of Orthodontics

|| University of Nis, Medical Faculty, Dental Clinic, Department of Oral Surgery

Autor za korespodenciju:

Marija Igić

Medical Faculty, Blvd. Zorana Djindjica 81, 18000 Niš, Serbia

e-mail: marija.igic@medfak.ni.ac.rs
EFEKAT LASERA I HIJALURONSKE KISELINE NA GINGIVITIS
EFFECTS OF LASER AND HYALURONIC ACID ON GINGIVITIS

Apstrakt

Uvod/Cilj. Kataralni gingivitis je najčešće oboljenje oralne sluzokože kod dece i predstavlja inflamaciju gingive eksudativne prirode. Cilj rada je bio da se kliničkim parametrima oceni efikasnost lasera male snage i hijaluronske kiseline na kataralni gingivitis kod dece. Metode. Ispitivanjem je obuhvaćeno 100 dece sa stalnom dentijom kod kojih je dijagnostikovan gingivitis catarrhalis. Ispitanici su podeljeni u dve grupe: I grupu čine pacijenti sa inflamiranom gingivom (gingivitis catarrhalis– 50 ispitanika), kod kojih je nakon uklanjanja mekih i čvrstih naslaga primenjena terapija aplikovanjem hijaluronske kiseline; II grupu čine pacijenti sa inflamiranom gingivom (gingivitis catarrhalis– 50 ispitanika), kod kojih je nakon uklanjanja mekih i čvrstih naslaga primenjena terapija laserom male snage. Klinička procena terapijskih efekata lasera male snage i hijaluronske kiseline na gingivitis catarrhalis vršena je uz pomoć odgovarajućih indeksa: plak indeks po Greene-Vermillion-u (PI), Muhlemannov indeks krvarenja (IKR) i Community Periodontal Index of Treatment Needs (CPITN). Rezultati. Studentovim t-testom zavisnih uzoraka dobijena je statistički značajna razlika (p<0,001) između PI, IKR i CPITN indeksa pre i PI, IKR, i CPITN indeksa posle terapije u obe ispitivane grupe. Takođe CPITN indeksa posle terapije ispitanika II grupe je statistički značajno niži (p<0,05) u odnosu na ispitanike I grupe. Zaključak. Dobijeni rezultati pokazuju izuzetan efekat hijaluronske kiseline i lasera male snage uz bazičnu terapiju u lečenju kataralnih gingivita kod dece. Nesto bolji rezultati su dobijeni u kombinaciji bazične terapije i lasera male snage.

Ključne reči: gingivitis, laser male snage, hijaluronska kiselina.

Abstract

Background/Aim. Gingivitis catarrhalis is the most common disease of the oral mucosa in children, representing an inflammation of the gingiva of an exudative nature. The aim of this study was to evaluate the effectiveness of low-level laser therapy and hyaluronic acid therapy on gingivitis catarrhalis in children using the appropriate clinical parameters. Methods. The study involved 100 children with permanent dentition in whom gingivitis catarrhalis had been diagnosed. The examinees were divided into two groups: group I, with the patients with gingival inflammation (gingivitis catarrhalis – 50 examinees) in whom the therapy with hyaluronic acid was applied after the removal of soft and hard dental deposits; and group II, with the patients with gingival inflammation (gingivitis catarrhalis – 50 examinees) in whom low-level laser therapy was applied after the removal of soft and hard dental deposits. Clinical evaluation of the therapeutic effects of low-level laser and hyaluronic acid therapies on gingivitis catarrhalis was performed using the appropriate indices: the Greene-Vermillion plaque index (PI), Muhlemann bleeding index (BI), and Community Periodontal Index of Treatment Needs (CPITN). Results. Using the Student’s t-test for dependent samples, a statistically significant difference was obtained (p < 0.001) between the PI, BI, and CPITN before, and between PI, BI, and CPITN indices after the therapy in both examined groups. Moreover, the
CPITN index after the therapy in group II examinees was statistically significantly lower (p < 0.05) than that obtained in group I. **Conclusion.** The results we were able to obtain demonstrated an exceptional effect of hyaluronic acid and low-level laser therapy, supplementing basic therapy, in the treatment of catarrhal gingivitis in children. Somewhat better results were achieved with the combination of basic therapy and low-level laser.

Key words: gingivitis, low-level laser, hyaluronic acid.

Introduction

Gingivitis catarrhalis is the most common disease of the oral mucosa in children, representing an inflammation of the gingiva of an exudative nature. It occurs as the consequence of gingival tissue reaction to the stimuli produced by local factors. Gingivitis catarrhalis is characterized by bleeding from the gingiva upon provocation, and the intensity of bleeding is proportional to the severity of gingival inflammation.

The treatment of gingivitis catarrhalis involves primarily the standard (basic) therapy – removal of any causal agents and motivation and education of children to maintain adequate oral hygiene. The removal of causal agents involves the removal of any agents directly or indirectly involved in the onset of this disease. These are, above all, local factors, such as dental deposits (dental biofilm and calculus), then iatrogenic factors, caries, bad habits, and some dietary factors. Clinical improvements are directly related to the reduction or removal of subgingival biofilm.

Gingivitis catarrhalis is most commonly caused by the bacteria present in the dental plaque. These bacteria produce some specific enzymes (proteinases and hyaluronidases) which destroy the structure of the connective tissue (above all, collagen types I and IV). Furthermore, they tend to depolymerize the structure of hyaluronic acid and thus damage the tissue of the tooth supporting structure. In further course of the disease, additional pathological changes usually appear, which, if left untreated, can ultimately lead to the loss of teeth.

The use of hyaluronic acid is a fundamentally new biological approach in dentistry in the prevention and treatment of lesions and inflammatory changes in the oral cavity. The substance has also been studied as a metabolite or inflammation marker present in the gingival fluid, and also as an important factor involved in growth, development and regeneration of tissue.

The beneficial effects of laser light in the therapy of gingivitis have also been a focus of attention. The first ruby laser was developed by Maiman in 1960. Soon after that, its possible use in dentistry was recognized. The interest in the development of this technology in all disciplines of dentistry has been on the rise ever since. The fact that the use of low-power laser is entirely painless, non-invasive and without any adverse effects is especially important in that regard. Exceptionally good results are achieved with the use of low-level laser as an adjuvant to standard, basic therapy, in the treatment of periodontal inflammations.

Nowadays, it is a well known fact that the rays of low-level laser light can have both primary (photochemical, photoelectric, and photoenergetic) and secondary effects (stimulation of the cell metabolism and microcirculation), with the resultant therapeutic
laser light effects, such as analgetic, biostimulative, antiinflammatory, and antiedematous effects.[8,11,12,13]

The aim of this paper was to evaluate, using clinical parameters, the effectiveness of low-level laser and hyaluronidase in gingivitis catarralis in children.

Methods

The study involved 100 children with permanent dentition (aged 13-17 years) diagnosed with catarrhal gingivitis. Their gender representation was balanced. The examinees were divided into two groups. Group I consisted of the patients with gingival inflammation (gingivitis catarrhalis – 50 examinees) in whom the therapy with hyaluronic acid was applied. Hyaluronic acid was administered by gently rubbing in the gel into the inflamed gingiva daily for a week. Group II included the patients with gingival inflammation (gingivitis catarrhalis – 50 examinees) in whom, after the removal of soft and hard dental deposits, the therapy with low-level laser was applied using the Scorpion-dental-Optima laser in 5 daily sessions (with 635 nm wavelength, initial power of 25 mV, and a 120 s exposure).

Clinical evaluation of the therapeutic effects of low-level laser and hyaluronic acid on gingivitis catarrhalis was performed using the appropriate indices. The following indices were determined for all patients, both before and after the therapy: Greene-Vermillion plaque index (PI), Muhlemann bleeding index (BI), and Community Periodontal Index of Treatment Needs (CPITN).

The study was approved by the Ethical Committee of the Medical Faculty, University of Nis (in accordance with the World Medical Association Declaration of Helsinki).

The examined parameters were represented with standard values (r) and standard deviations (SD). The coefficient of variation was determined as the measure of homogeneity of the examined samples in relation to the examined parameters. The Student’s t-test of independent samples was used to test for statistically significant differences between the mean values of these two groups. The entry and tabular representation of results were done using the MS Office Excel, and calculations were performed using the SPSS ver. 15.0 software package.

Results

The values of PI, BI and CPITN were shown in Tables 1, 2 and 3. Student’s t-test of independent samples detected a statistically significant difference (p<0.001) between PI, BI and CPITN indices before and after therapy in both studied groups. Further, the CPITN value after therapy in group II examinees was statistically significantly lower (p<0.05) compared to that in group I examinees.

Discussion

Inflammation of the gingiva is common in children. Early diagnosis and treatment are very important, since if left untreated, the inflammation may involve other periodontal tissues and the process becomes irreversible. A complex etiopathogenesis of the diseases which involve periodontal tissues, developing in a complex anatomical substratum, makes any monitoring of the disease course very difficult. The pathological processes involving the tissue of periodontium begin without any external manifestation, and initial reactions
cannot be at all detected. The stage of the disease is of key importance regarding the necessary treatment and prognosis. Each case of gingivitis has to be treated, so that the disease is prevented to progress and involve deeper periodontal tissues and, as a result, irreversible changes are avoided. Newer and more effective treatment tools and methods are therefore sought for.

In group I examinees, in addition to the usual, basic therapy of chronic gingivitis, hyaluronic acid was topically applied. The obtained post-treatment values of PI, BI and CPITN demonstrated that hyaluronic acid, owing to its antiinflammatory, antiinfective, antiedematous and regenerative actions help in the healing of chronic gingivitis in children. Hyaluronic acid is a natural biological substance in the gingival connective tissue. In chronic gingivites, under the action of bacterial enzymes (hyaluronidase), hyaluronic acid is decomposed. As a result, the structure of the gingival tissue is lost, with a resultant increased exchange of fluids between the tissue and the vascular system and consequential edema creation. Increased capillary permeability enables bacteria and their toxins to penetrate the tissue more easily, which further intensifies inflammation. Applied to the inflamed gingival tissue, hyaluronic acid exerts its antiinflammatory, antiedematous and antiproliferative effects. The results of this study corroborate other authors’ findings that topical application of hyaluronic acid to gingival tissue, in the form of a gel or spray, is able to reduce bleeding and inflammation of the gingival. It can be applied daily without any adverse effects. A significant clinical improvement after the treatment of gingivitis with hyaluronic acid, manifested among other things as reduced gingival bleeding, has been reported by other authors as well.

In group II examinees, low-level laser therapy supplemented basic therapy. The obtained post-treatment values of plaque index, bleeding index and CPITN showed that low-level laser, thanks to its antiinflammatory, antiedematous and biostimulation effects, was able to help in the healing of chronic gingivitis in children. Various researchers have reported that low-level laser therapy supplementing basic therapy is able to reduce gingival inflammation and that it can be successfully used in the therapy of gingivitis and parodontopathy. The results of some investigations have shown that laser therapy exerts analgetic effects only. However, in recent decades, laser therapy has also been attributed with significant antiinflammatory properties. Low-level laser light reduces inflammation and produces clinically apparent antiinflammatory and antiedematous effects. Laser light provokes increased tissue regeneration. The action of low-level laser reduces blood vessel permeability and suppresses exudative processes, which in further course reduces gingival edema. Moreover, blood vessel permeability is normalized. By their biostimulation effect, low-level lasers increase cellular growth and proliferation, and induce changes in the circulation of lymph and blood (leading to a better blood supply and facilitated tissue drainage). Inflammatory response can be normalized or reduced by photochemical effects of laser radiation. The similar was observed in this study too, where the applied basic therapy supplemented by low-level laser produced a significant downgrading of inflammation, as documented by the appropriate indices.

If it is not diagnosed timely, catarrhal gingivitis progresses and the pathological process involves other periodontal tissues, resulting in parodontopathy and subsequent loss of teeth. That is why it is important to intensify health education activities and prevent the onset and development of catarrhal gingivitis with all the available prevention and prophylactic measures and tests to establish the risk of the disease. This is essential bearing
in mind that periodontal diseases can be the risk factor in the onset and development of other consecutive diseases, such as, for instance, cardiovascular, renal, and skin diseases.

Conclusion

Current dental health care, observed from the point of view of new technological advancements, is able to offer much more than in the relatively recent past in the resolution of various dental problems. The results we were able to obtain showed an exceptional effect of hyaluronic acid and low-level laser in the treatment of catarrhal gingivites in children. Slightly better results were obtained with the combination of basic (standard) therapy and low-level lasers.
References

13. Teymouri F, Farhad SZ, Golestaneh H. The Effect of Photodynamic Therapy and Diode Laser as Adjunctive Periodontal Therapy on the

Table 1.

Mean values of the plaque index (PI) in the studied groups before and after therapy

<table>
<thead>
<tr>
<th>Group</th>
<th>PI before therapy</th>
<th>PI after therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>SD</td>
</tr>
<tr>
<td>I</td>
<td>1.68</td>
<td>0.47</td>
</tr>
<tr>
<td>II</td>
<td>1.82</td>
<td>0.39</td>
</tr>
</tbody>
</table>

* p < 0.001

Table 2.

Mean values of the bleeding index (BI) in the studied groups before and after therapy

<table>
<thead>
<tr>
<th>Group</th>
<th>BI before therapy</th>
<th>BI after therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>SD</td>
</tr>
<tr>
<td>I</td>
<td>1.74</td>
<td>0.44</td>
</tr>
<tr>
<td>II</td>
<td>1.90</td>
<td>0.61</td>
</tr>
</tbody>
</table>

* p < 0.001
Table 3.

Mean values of the CPITN in the studied groups before and after therapy

<table>
<thead>
<tr>
<th>Group</th>
<th>CPITN before therapy</th>
<th>CPITN after therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>SD</td>
</tr>
<tr>
<td>I</td>
<td>1.50</td>
<td>0.51</td>
</tr>
<tr>
<td>II</td>
<td>1.60</td>
<td>0.49</td>
</tr>
</tbody>
</table>

* $p < 0.001$
† $p < 0.05$

Recived on December 7, 2017.
Revised on June 18, 2018.
Accepted on June 25, 2018.
Online First July 2018.