Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article: APPLICATION OF A GEOGRAPHIC INFORMATION SYSTEM IN THE STUDY OF SPATIAL ASPECTS OF CERVICAL CANCER INCIDENCE IN BELGRADE

PRIMENA GEOGRAFSKOG INFORMACIONOG SISTEMA U ISTRAŽIVANJU PROSTORNIH ASPEKATA OBOLEVANJA OD RAKA GRLIĆA MATERICE U BEOGRADU

Authors: Nevenka Pavlović*, Ljiljana Marković Denić†, Katarina Vojvodić*; Vojnosanitetski pregled (2018); Online First May, 2018.

UDC:

DOI: DOI: https://doi.org/10.2298/VSP180412095P

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
APPLICATION OF A GEOGRAPHIC INFORMATION SYSTEM IN THE STUDY OF SPATIAL ASPECTS OF CERVICAL CANCER INCIDENCE IN BELGRADE

PRIMENA GEOGRAFSKOG INFORMACIONOG SISTEMA U ISTRAŽIVANJU PROSTORNIH ASPEKATA OBOLEVANJA OD RAKA GRLIĆA MATERICE U BEOGRADU

Nevenka Pavlović*, Ljiljana Marković Denić†, Katarina Vojvodić*

*Institute of Public Health of Belgrade, †Institute of Epidemiology, Faculty of Medicine, University of Belgrade

For correspondence: Nevenka Pavlović, Bul. despota Stefana 54a 11000 Beograd, 063/269216, nevenka.pavlovic@zdravlje.org.rs
GIS u istraživanju raka grlića materice

Abstract

Background/Aim. Cervical cancer is still an important public health problem in Belgrade. The aim of this study was to explore spatial patterns of cervical cancer, provision and accessibility of Women’s health service on primary level in Belgrade, as well as the needs for improving cancer surveillance and preventive programs. **Methods.** This study applied a descriptive epidemiological method and Geographic Information System based on data on cervical cancer diagnosed among female residents of Belgrade in 2006 and 2011. A map of the density of cases, with precise and complete data on the address of residence at the time of diagnosis, and a map of the distribution of gynecological practices in primary health care in Belgrade, were generated through the process of georeferencing. **Results.** A total of 569 cases of cervical cancer were registered in 2006 and 2011, without significant differences. Significant associations were noticed for municipality of residence and year of diagnosis ($X^2=42.99 \text{ df}=16 \ p=0.000$), and year of diagnosis and age groups 30-34 ($p=0.038 \ f=3.998 \text{ df} =11 \text{ ANOVA}$), 40-44 ($p=0.001 \ f=7.545 \text{ df} =13 \text{ ANOVA}$) and 45-49 ($p=0.046 \ f=2.679 \text{ df}=15 \text{ ANOVA}$). The process of georeferencing covered a total of 466 cases (81.8%) with 97.4% of all cases diagnosed in 2006 and 68.6% in 2011. The generated maps showed similar spatial patterns of cases for both years: a higher density of cases with addresses in central parts of urban and suburban municipalities, as well as in parts of densely populated areas of urban municipalities. There was no regularity of grouping found for the cases in relation to the provision of Women’s health service, or of distance from the place of residence of cases to gynecological practices. **Conclusions.** Our results indicate possibilities for the perception of the spatial distribution of cervical cancer and needs for improving cancer surveillance and preventive programs on small geographical areas.

Keywords: Cervical cancer; epidemiology; spatial distribution; GIS; primary health care level.
Introduction

Cervical cancer is the fourth most common malignant tumour among women worldwide, with an expressed disparity in the burden and trends in various parts of the world. It is the second most frequent cancer in the less developed regions, and the eleventh in the more developed regions. The burden on the European continent is increasing from west to east, and it is highest in Central and Eastern European countries (standardized incidence rate of 19.2/100,000 and mortality of 8.0/100,000). The values of the incidence and mortality for countries in the region are about twice those of Northern and Western European countries. Based on the incidence rate, Romania is in first place (34.9/100,000), while Serbia (the region of Southern Europe) is in fourth place (28.3/100,000). Differences are also noted across smaller geographic areas. The area of Belgrade and eastern regions that gravitate towards the Romanian border have been the areas with the highest incidence rates in Serbia for years. Cervical cancer is in third place regarding incidence and in fourth place as the cause of death among women due to malignant tumours in Belgrade.

The differences in geographic burden of cervical cancer and high variation in incidence rate and mortality may arise due to multiple reasons. They mainly reflect the varied distribution of known risk factors, various host sensitivity, differences in the detection, treatment and monitoring of carcinoma patients, methods of registration and reporting system, as well as lack of healthcare, lack of screening or insufficient coverage of the population by preventive examinations.

Data on the incidence and mortality due to cervical cancer in most European countries, as well as in Serbia, are part of the surveillance of malignant diseases, and are found in the population cancer registries. Their completeness and quality are the basis for research activities, efficient planning and adaptation of the programs of prevention and suppression of disease at all levels, from the national to the local. Aiming to provide a comprehensive overview of the epidemiological situation and assess further activities, an increasing level of attention today is dedicated to analysing the spatial aspects of disease, by combining a descriptive epidemiological method with the application of a Geographic Information System (GIS). Contemporary information technologies provide for the detection and visualization of spatial patterns that may be missed by applying the classical descriptive method or with tabular overviews of the results.
The aim of this paper is to present results of spatial analysis of cervical cancer incidence, provision and accessibility of Women’s health service on primary health level in Belgrade, carried out by descriptive epidemiological method and Geographic Information System.

Methods

Study location and population

The territory of Belgrade covers an area of 322,268 ha (the inner-city area covers 35,996 ha), administratively divided into 16 municipalities - 10 urban (Čukarica, Voždovac, Vračar, Novi Beograd, Palilula, Rakovica, Savski venac, Stari grad, Zemun, Zvezdara) and 6 suburban municipalities (Barajevo, Grocka, Lazarevac, Obrenovac, Mladenovac, Sopot). According to census data (from 2002 and 2011) Belgrade had a total of 828,270 female inhabitants with a median age of 41.6 (for 2006) and 873,614 female inhabitants with a median age of 43.2 (for 2011).

Data collection and management

The source of data was the Population Cancer Registry for Belgrade. The data analysis used the incidence of cervical cancer diagnosed in Belgrade for 2006 and 2011 (International classification of Diseases, Injuries and Causes of Death, 10th revision, code C 53). We used proportions, crude, standardized and age-specific incidence rates per 100,000 female inhabitants. Crude and age-specific incidence rates were calculated using census data (2002 and 2011). Analysis of standardized incidence rates was performed using the direct method with world standard population 18.

The collected dataset includes information on the address of residence, year of diagnosis and age of cases at the time of diagnosis. Chi-square, Student's t-test and analysis of variance (ANOVA) were used to assess statistical significance.

Maps of cervical cancer density and maps of the distribution of gynecological practices at Primary Health Care Centres (PHCC) were generated through the process of georeferencing, using the precise data on residence at the time of diagnosis and the addresses of gynecological practices in 2006 and 2011.

Data for the provision of gynecological health care at the primary health care level were taken from the Annual report on the plan of work of the Women's Health Belgrade PHCs in 2006 and 2011.
Provision of gynecological health care is expressed through the number of women per one gynecologist (6500/1) among the total adult female population (age 15 and over at the municipality of the health care centre), and interpreted according to the Rulebook for providing health services in healthcare institutions on a daily basis (the measure is 30 visits per day per gynecologist) 19.

Spatial accessibility of gynaecological health care is examined as the geographical distance of the registered cases to the nearest gynecological practice in the municipality of residence at the time of established diagnosis (20 minutes walking distance).

Results

There were 569 registered new cervical cancer cases within the territory of Belgrade in 2006 and 2011 (263 and 306). Crude incidence rate in 2006 was 31.75/100,000, while the standardized one was 20.4 per 100,000. Crude incidence rate in 2011 was 35.0/100,000, while the standardized one was 22.9/100,000. Cervical cancer in 2006 was in second place (9.3%) in frequency among all female cancers in Belgrade, after breast cancer (30.7%), while in 2011 it was in third place (8.2%) after breast carcinoma (33.7%) and colorectal carcinoma (8.3%).

Significant differences have been noticed regarding municipality of residence and year of diagnosis. Among the total number of registered cases of disease in 2006, 45.6% are with residence data within 4 municipalities: Novi Beograd, Čukarica, Palilula and Voždovac (with uniform participation between 11.0% and 11.8%). During 2011 nearly all Belgrade municipalities registered a decrease or maintenance of values similar to those in 2006, with the exception of the municipalities of Zemun and Savski venac, where a nearly threefold increase in the number of female patients has been registered (from 8.7% to 24.8%, and 1.9% to 5.9%). This difference is statistically significant ($X^2=42.99$ df=16 $p=0.000$).

The municipalities with the highest incidence rate in 2006 were Mladenovac, Vračar, Rakovica and Voždovac, while in 2011 these were Savski venac, Zemun and Mladenovac. The highest increase in the incidence rate in 2011 was registered among the residents of the municipalities of Zemun and Savski venac. A decrease in the incidence rate in 2011 was registered among the residents of the municipalities of Rakovica, Vračar and Mladenovac (Figure 1).
The average age of female patients in 2006 was 54.9 years, while in 2011 it was 53.5. The highest age-specific incidence rates in 2006 were registered in the age groups of 55-59 (3.6/100,000) and 40-44 (3.2/100,000). Comparing 2011 with 2006, incidence rates were higher in nearly all age groups, except for 55-59, 65-69 and 70 and over. High values of age-specific rates were registered among women aged 35 to 64 years, with the highest values in the age groups of 40-44 (3.6/100,000) and 45-49 (3.5/100,000) (Figure 2). Variance analysis has noticed a statistically significant difference for age groups. The difference was noticed for the age groups 30-34 (p=0.038 f=3.998 df=11), 40-44 (p=0.001 f=7.545 df=13) and 45-49 years (p=0.046 f=2.679 df=15).

Among the total of 569 reported cases of cervical cancer during the two observed years, the process of georeferencing made it possible to capture data for 466 (81.8%) patients. Data for 103 patients was not included in the formation of case density maps, since they lacked precise and complete data on the place of residence at the time of diagnosis. The maps were created based on municipal administrative borders.

Among the 263 reported cases of cervical cancer in 2006 complete data was available for 256 (97.4%) and their spatial distribution is shown on a map of Belgrade (Figure 3). The highest density of cases is observed in central parts of urban and suburban municipalities. Nearly all municipalities exhibit areas without a single registered case of disease.

The cervical cancer case density map for 2011 was formed by geocoding data for only 210 of the 306 reported cases of disease. The necessary data was lacking for nearly one third of the cases (31.4%) (Figure 4). The highest number of reports with incomplete geocoding data was related to patients with addresses of residence in the municipality of Zemun (around 47.0%), Voždovac (9.4%), Savski venac and Palilula (8.3% each). The highest percentage of cases not shown regarding the number of registered cases per municipality of residence is in the municipalities of Zemun – 55.2% (42 of the total of 76 cases), Savski venac – 45.0% (8 out of 18) and Palilula -38.0% (8 out of 21).

All usable data, shown simultaneously in a single map, display nearly similar spatial grouping patterns of cervical cancer cases in both observed years. A higher density of cases is noted among persons with an address of residence in the central parts of urban and suburban municipalities, as well as in parts of more densely populated urban municipalities (Figure 5). This map, along with the map for 2011, remains without the large amount of
data that could affect the spatial distribution of disease and case density within the territory of the city.

A map was formed to analyse the accessibility of gynecological healthcare with data on the spatial distribution of registered cases of cervical cancer in both observed years and the networks of health care institutions of primary health care where a gynaecological examination can be had. The results of mapping the available data did not indicate a regularity of grouping regarding distance from the healthcare institution. Except for parts of municipalities with a higher case density near a health care institution, the registration of individual cases was also noted with residential addresses at up to 20 minutes of walking distance from the healthcare institutions, as well as a significant number of cases at destinations farther than the above measure.

The provision of gynecological health care in accordance with current norms for primary health care during both observed years was met by 13 of the 16 Belgrade PHCCs (Table 1). More than 6500 women per one gynecologist were registered in 2006 in PHCC in Lazarevac (8281) and Novi Beograd (7288), and in 2011 in the PHCC of Zvezdara (7065), Čukarica (6875) and Zemun (6748). The number of women exceeding the amount of the established norm per gynecologist is noted to be higher during this year compared to the previous observed year, despite the average provisions at the city level being at nearly identical values (2006:2011= 5645:5675).

The greatest daily gynecologist workload was reached in 2006 at the health care centres in Lazarevac (44.9), Voždovac (34.8) and Zemun (33.0). During 2011 this parameter of the workload indicator of gynecologists was above 30 visits per day almost only at a single health care centre (Zvezdara 30.5 and Stari grad 33.2) (Table 1). The average daily workload of gynecologists decreased in 2011 compared to 2006. (2006:2011= 28.2:21.9).

Discussion

According to the results of our paper, both crude (35.0/100,000) and standardized rate of cervical carcinoma incidence in 2011 (22.9/100,000) was higher than in 2006, but this increase was not significant. The average standardized incidence rate of this malignant tumour among the population of women in Belgrade during the period 2006-2011 was at 21.6/100,000. Within the structure of malignant tumour cases, cervical cancer was in third place in 2011, after breast cancer and colorectal cancer. Other parts of Serbia have
also registered a higher frequency of colorectal cancer, explicable through risk factors such as, in addition to the aging population and family history of colorectal cancer, poor diet, smoking, and insufficient physical activity. Similar findings have been noted in other countries, mostly due to the adaptation to lifestyles and behaviors commonly associated with westernization.

Incidence rates at the level of municipalities from within the territory of Belgrade differ notably. Similar to the results of research abroad, data from research within our area indicates that women living in rural areas are at higher risk of cervical cancer compared to those living in urban areas. This risk is related to failure to undertake preventive examinations, but not because of their place of residence, but the lower level of education and poorer socio-economic status. According to the latest health survey in our country covering the period 2011-2013, the Papanicolaou test was undertaken by 75.9% of women from the most prosperous group, 74.0% of highly educated, 72.5% of residents of Belgrade and 62.3% from urban settlements. An unavoidable component is also the positive sum of migration for Belgrade, particularly during the nineteen-nineties, when it had altered characteristics (forced migration). Between the last two census years immigration was particularly intensified in settlements outside the core urban area. The highest number of persons arriving found refuge in the Zemun settlements, where they comprise around 11% of the population of this municipality.

The highest age-specific incidence rates in 2006 were registered in the age groups 55-59 and 40-44, while in 2011 this moved towards younger age groups, 40-44 and 45-49. During the two observed years a statistically significant difference was found for the age groups 30-34, 40-44 and 45-49, pointing towards a necessary analysis of a greater number of years. The risk of cervical cancer increases with age, and in our country the incidence rate is at its maximum between ages 45-49 and 50-54. The shift towards younger age groups can be related to changes in exposure to risk factors. Sexual habits have changed in the sense of earlier onset of sexual activity, a higher number of partners compared to older generations, and tobacco use which is, after oncogenic types of HPV, the second most important risk factor for the occurrence of cervical cancer.

Applying the process of georeferencing the available data on the precise addresses of residence of patients at the time diagnosis with the gynecological offices of PHCCs, maps were generated that indicated approximately similar spatial patterns of grouping of cervical
cancer patients during both observed years. A higher density of cases was noted in more densely populated areas (in central zones of urban and suburban municipalities) and a lower number of cases in rural municipalities compared to urban parts of the city. Certain parts of the municipalities have not registered a single case of the disease. During both observed years cases have been registered in approximately similar locations compared to the place of residence.

Regarding the distance of the place of residence of registered cases of disease from PHCCs, no correlation or regularity of patient grouping has been observed.

Our results are only in regards to the data available for 2006 and 2011, and do not preclude the potential for the existence of a different disease distribution pattern after accounting for data from a greater number of years. Similar study was conducted by researchers from Malaysia. They investigated the spatial distribution cases of colorectal cancer over a ten-year period and measured the distance from existing health facilities. They also had 17.6% of incomplete data. A part of the results revealed higher concentration of cases in major town centers. This concentration of cases is probably due to accessibility of the population to screening facilities. Authors of this study also discussed other results and considered limitations of the study and agreed that it is important to include spatial information as part of the database of Cancer Registry. These information can be used for improve efficacy of public health promotion activities, as well as for planning health care delivery.

GIS has been used for the needs of a Cancer Registry for more than fifteen years in the USA. Data on all identified cases that are already in the Cancer Registry, are routinely entered into a GIS. On that way they are able to correlate of incidence with geographic and environmental parameters and the discovery of disease emergence patterns within an area.

The visualisation of case distribution and evaluation of the accessibility of health care institutions can further be used for planning health care services (e.g. screening centres), both in regards to assessing the location of existing health care institutions, as well as to planning the opening of new ones in locations more favourable for the population. The experience of Australian researchers indicates the importance of the distance between the place of residence of those invited for a mammography screening and the place it is being held. A better response was obtained among women from areas where no mammography was organized up to that time and who did not do this preventive examination living up to 3
km from the nearest healthcare units (12%) than among those living at a greater distance (8%). They concluded that the response of the target population could be increased if the existing healthcare facilities were replaced with six new ones, located closer to the areas where the situation is “least favourable” 33. Research by a numerous authors produced assessments of the role of accessibility of health care in explaining variations in late-stage breast cancer, by applying GIS and spatial analysis. Research has shown that poor geographic accessibility regarding distance and time necessary to reach the health care institution, as well as socio-economic factors, all contribute to the higher development of the late stage of the disease. Similar conclusions were obtained in the studies of the impact of geographical and racial/ethnic variability in uptake of cervical cancer screening, incidence and mortality rate 31, 34-36.

We have also analysed the impact of providing gynecological health care and gynaecologist workloads in Belgrade PHCCs during both observed years. The data indicated that the average annual values are below the values envisaged by current norms prescribed for performing health care activities at the primary level 17. Deviations have been found in 3 health care centres during each year, with the daily number of gynecologist visits decreasing in 2011 (Table 1). During both observed years gynecological examinations aimed at early detection of malignant disease or examinations containing the Pap test covered around 19% of the population aged 25 and above (19.5% and 18.8%). Studies have shown that in countries where the incidence of cervical cancer is frequent, coverage of women through regular gynecological examinations is low, and use the Pap smear as the primary test, well organized screening program at the national level could play an important role. It could have a major effect in the next few decades of implementation on decline in cervical cancer incidence and mortality by detecting and treating precancerous lesions 37-41. The implementation of organized screening program in Serbia has started in December 2012. (in Belgrade at Voždovac, Palilula and Ćukarica), but we still are dealing with obstacles, such as low percent of women of target population who have been screened within the program 42, 43.

Limitations of the paper
This study has some limitations which have to be pointed out. Case density maps have been shown for the two observed years (2006 and 2011), but for 82.0% of the total number of
registered cases. For the rest of the cases, precise data on the place of residence at the time of diagnosis were not available. The share of incomplete data was particularly significant in the reports from 2011 (as many as 31.4% of the reports). This data limited the analysis of the spatial distribution of the disease.

Conclusion

The results of mapping have shown a greater density of cases among persons with a residential address in central parts of municipalities in the urban and suburban areas during both observed years, and identified zones without any registered cases of disease in nearly all Belgrade municipalities. These zones were noticed due to the visualization method, and other display methods would have left them unrecognized.

Providing a more complete data on precise addresses of residence and expanding research to a wider range of years can initiate the application of other, analytical GIS functions. This should contribute to better insight into the epidemiological situation and improve the efficiency of implementation of prevention program for cervical cancer.
References

42. Regulation on the National Program for early detection of cervical cancer, Official Gazette of the Republic of Serbia, No.73/13 (Serbian).

Fig. 1- Cervical cancer incidence rates (per 100 000) by municipalities, Belgrade, 2006 and 2011.
Fig. 2- Age-specific incidence rates of cervical cancer (per 100,000) in Belgrade, 2006 and 2011

Fig. 3- Spatial distribution of cervical cancer cases in Belgrade, 2006
Fig. 4-Spatial distribution of cervical cancer cases in Belgrade, 2011
Fig. 5- Spatial distribution of cervical cancer cases in Belgrade, 2006 and 2011
Table 1. Provision of gynecological health care and daily workload of gynecologists at healthcare centres in Belgrade, 2006 and 2011.

<table>
<thead>
<tr>
<th>Primary Health Center</th>
<th>Number of patients per gynecologist</th>
<th>Average number of daily visits per gynecologist</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>2011</td>
</tr>
<tr>
<td>Barajevo</td>
<td>5.282</td>
<td>5845</td>
</tr>
<tr>
<td>Voždovac</td>
<td>5.405</td>
<td>5695</td>
</tr>
<tr>
<td>Vračar</td>
<td>5.879</td>
<td>4708</td>
</tr>
<tr>
<td>Grocka</td>
<td>4554</td>
<td>5123</td>
</tr>
<tr>
<td>Zvezdara</td>
<td>6125</td>
<td>7065</td>
</tr>
<tr>
<td>Zemun</td>
<td>6.546</td>
<td>6748</td>
</tr>
<tr>
<td>Lazarevac</td>
<td>8.281</td>
<td>6402</td>
</tr>
<tr>
<td>Mladenovac</td>
<td>4.579</td>
<td>4682</td>
</tr>
<tr>
<td>Novi Beograd</td>
<td>7288</td>
<td>5340</td>
</tr>
<tr>
<td>Obrenovac</td>
<td>6.076</td>
<td>5230</td>
</tr>
<tr>
<td>Palilula</td>
<td>5.037</td>
<td>6078</td>
</tr>
<tr>
<td>Rakovica</td>
<td>4.975</td>
<td>5531</td>
</tr>
<tr>
<td>Savski venac</td>
<td>2929</td>
<td>3794</td>
</tr>
<tr>
<td>Sopot</td>
<td>4395</td>
<td>4472</td>
</tr>
<tr>
<td>Stari grad</td>
<td>4.649</td>
<td>3482</td>
</tr>
<tr>
<td>Čukarica</td>
<td>6.316</td>
<td>6875</td>
</tr>
</tbody>
</table>

Received on April 12, 2018.
Accepted on April 24, 2018.
Online First May, 2018.