VOJNOSANITETSKI PREGLED
VOJNOMEDICINSKA AKADEMIJA
Crnotravska 17, 11 000 Beograd, Srbija
Tel/faks: +381 11 2669689
vsp@vma.mod.gov.rs

ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article: FREQUENCY AND RISK FACTORS FOR INJURY OF THE INFERIOR ALVEOLAR NERVE DURING SURGICAL EXTRACTION OF THE IMPACTED LOWER THIRD MOLARS

UČESTALOST I FAKTORI RIZIKA ZA POVREDU DONJEG ALVEOLARNOG NERVA U TOKU HIRURŠKE EKSTRAKCIJE IMPAKTIRANIH DONJIH TREĆIH MOLARA

Authors: Dejan Dubovina*, Stevo Matijević†, Filip Đorđević*, Jelena Stanišić*, Branko Mihailović* and Zoran Lazić†; Vojnosanitetski pregled (2018); Online First March, 2018.

UDC:

DOI: https://doi.org/10.2298/VSP171024032D

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
Frequency and Risk Factors for Injury of the Inferior Alveolar Nerve during Surgical Extraction of the Impacted Lower Third Molars

Učestalost i faktori rizika za povredu donjeg alveolarnog nerva u toku hirurške ekstrakcije impaktiranih donjih trećih molara

Dejan Dubovina*, Stevo Matijević†, Filip Đorđević*, Jelena Stanišić*, Branko Mihailović* and Zoran Lazić†
*Department of Oral Surgery, Medical Faculty, University in Pristina, Kosovska Mitrovica, Serbia;
†Clinic of Stomatolgy, Military Medical Academy, Belgrade, Serbia

Abstract

Background/Aim. The injury of inferior alveolar nerve during surgical extraction of impacted lower third molars, followed by sensory disturbance, is, for the patient, an extremely unpleasant complication. The aim of this study was to determine the frequency of this complication after the third molar surgery in patients of northern part of Kosovo and Metohia, and its frequency depending on tooth position and tooth relation to the mandibular canal.

Methods. In this study, 800 surgical extractions of the impacted lower third molar were performed. The position of the impacted tooth was recorded according to the Winter classification, as well as the ratio of their root tips to the mandibular canal using the Tanaka and al. and Rood and Shebab classifications.

Results. The frequency of the recorded post extraction sensory disturbance was 2.25%, most frequently when teeth were in mesioangular position. Concerning Tanaka and al. classification, the incidence of injuries was inversely proportional to the increase of the distance between roots and mandibular canal with the statistical significance in cases where
mandibular canal overlaps more than half of the root of the tooth (p=0.001). Considering radiological signs recommended by Rood and Shehab, higher frequency of the inferior alveolar nerve injury was recorded when illumination in the area of the root tips was present and when the loss of linear overshadowing characterized by the "roof" and the "bottom" of the mandibular canal were observed, or diversion of the canal and root deflection, but without statistical significance.

Conclusion. The superposition of the mandibular canal with the lower third molar roots at the panoramic radiographies may increase possibility of the inferior alveolar nerve injury. Angulations of the impacted lower third molar, as well as vicinity of the tips of its roots to the content of the mandibular canal, do not significantly affect the frequency of the nerve injury.

Key words: lower third molars, impacted; inferior alveolar nerve, injury; paraesthesia

Apstrakt

Uvod/Cilj. Povreda donjeg alveolarnog nerva prilikom hirurške ekstrakcije donjeg impaktiranog umnjaka, praćena poremećajem senzibiliteta, za pacijenta je izuzetno neprijatna komplikacija. Cilj ovog istraživanja je bio da se utvrdi učestalost ove komplikacije posle hirurškog vađenja impaktiranih donjih umnjaka u pacijenata severnog dela Kosova i Metohije, zavisno od položaja donjeg umnjaka i njegovog odnosa odnosa prema mandibularnom kanalu.

Metode. U studiju je bilo uključeno ukupno 800 hirurških ekstrakcija impaktiranih donjih umnjaka. Preoperativno je analizom digitalnog ortopantomografskog snimka evidentiran položaj impaktiranih umnjaka prema Winterovoj klasifikaciji, kao i odnos njihovih vrhova korenova prema mandibularnom kanalu primenom klasifikacije Tanake i saradnika, kao i Rooda i Shehaba.

Rezultati. Učestalost poremećaja senzibiliteta iznosila je 2.25%, najčešće kada je umnjak bio u mezoangularnom položaju. Imajući u vidu klasifikaciju Tanake i saradnika, uočen je značajno veći broj povreda u slučajevima kada mandibularni kanal superponira više od polovine korena impaktiranog umnjaka (p=0.001). Praćenjem rendgenoloških znakova preporučenih od strane Rooda i Shehaba, veća učestalost povreda donjeg alveolarnog nerva zapažena je u slučajevima kada je postojalo rasvetljenje u predelu vrhova korenova i gubitak linijskog zasenčenja „krova“ i „poda“ mandibularnog kanala, ili kada je zapaženo skretanja kanala ili defleksija korenova, ali bez statisticke znacajnosti.

Zaključak. Superpozicija mandibularnog kanala sa korenovima donjeg trećeg molara na ortopantomografskom snimku može povećati mogućnost povrede donjeg alveolarnog nerva. Angulacija impaktiranih donjih umnjaka, kao ni odnos vrhova njihovih korenova prema sadržaju mandibularnog kanala, ne utiču značajno na učestalost povrede nerva.

Ključne reči: donji treći molari, impaktirani; donji alveolarni nerv, povreda; paraesthesia
Introduction

The injury of the inferior alveolar nerve during surgical extraction of the impacted lower third molars is relatively rare complication, but for the patient an extremely unpleasant one. It can occur indirectly (infection in the post extraction area, pressure of postoperative hematoma and/or oedema on the nerve) or directly (injuries due to intimate contact of the lower third molar roots and the nerve\(^1\)). This injury is manifested by permanent or transient sensitivity disturbance in the area of nerve innervation of varying intensity. Clinically, sensory deficits are classified as: paraesthesia (neuropraxia and axonotmesis) and anaesthesia (neurotmesis)\(^2\). Neuropraxia is the easiest degree of sensitivity disturbance and presents the appearance of mild paraesthetic sensations in the form of tingling, burning and numbness in the nervous distribution area\(^3\). It is usually due to ischemia or compression of the nerve, while its structure is still preserved\(^4\). Axonotmesis is a severe paraesthetic deficit that manifests itself as hyperalgesia (overstimulation on stimuli) or allodynia (pain caused by harmless stimuli)\(^5\). It occurs due to interruption of certain axons in the structure of the nerve with consequent Wallerian degeneration, but still with the preserved myelin coating\(^6\). Neurotmesis is a permanent and complete absence of sensitivity caused by a complete breakdown of the morphological continuity of the nerve.

The degree of restoration of sensitivity depends on the extent of the damage. The outcome after neuropraxia is most often a complete recovery of sensitivity by the end of the fourth month at the latest\(^7\). Axonotmesis is usually accompanied by an incomplete recovery of sensitivity, especially if the disturbance lasts longer than six months\(^8\), while anaesthesia in neurotmesis, which lasts longer than a month, is usually permanent\(^7\). A higher degree of recovery can be expected in younger people, with a good general condition, with good vascularization of the tissue, without the presence of a foreign body and with a preserved epineural coat\(^8\).

The aim of this study was to determine the frequency of the occurrence of sensory deficits in the innervation distribution of the lower alveolar nerve after surgical extraction of the impacted lower third molar, as well as the frequency of this complication in our patients coming from the northern part of Kosovo and Metohia, depending on tooth position and its relation to the mandibular canal.

Material and Method

The research was conducted as a prospect clinical study in the period from 2009. to 2017. at the Department of Oral Surgery, Faculty of Medicine in Kosovska Mitrovica. The study included 687 people of both sexes from the northern part of Kosovo and Metohia, aged 17-60 years, in whom 800 surgical extractions of the impacted lower third molars were performed. The study excluded people with a history of some neurological disease. The preoperative plan involved analysis of digital panoramic radiographs of each patient.
Position and angulation of impacted teeth were analysed according to the Winter classification. The study included teeth in most common positions - mesioangular, vertical, horizontal and distoangular. Also, the relationship of the root tips of the impacted teeth and the mandibular canal was analysed using classification by Tanaka et al. and the Rood and Shehab (Figures 1 and 2). The cases that were classified in the first three classes by Tanaka et al. were further analysed by Rood and Shehab classification. According to this classification, seven X-ray signs or indications of a close contact between the tips of the roots of the lower third molar and the contents of the mandibular canal were proposed (Figure 2).

In all the patients included in this study, surgical extractions of the impacted third molars were performed in local block anaesthesia for the inferior alveolar nerve (Ubistesin forte, Articaine + Epinephrine 1:100,000, Ultradent, USA; 1.7ml), with the use of standard triangular flap and buccal approach to the impacted lower third molar. Osteotomy and, if necessary, separation of crown and/or roots of the impacted teeth was performed using round and fissure carbide drills with minimal trauma to the surrounding jawbone and mandatory cooling with saline to prevent or reduce the surgical trauma of mandibular canal. After the extraction, antibiotic and/or analgesic therapy was prescribed when needed. Postoperative follow-ups were performed on the first and the seventh postoperative day. To patients with sensitivity disturbances registered in the innervated area of the lower alveolar nerve, the complex of vitamin B (Beviplex N, Galenika A.D, Serbia) was administered in the next four weeks, in a dose of one coated tablet daily, and, in the same period of time, infrared therapy applied locally (Infrared lamp, Medisana IRL), three times a week, lasting 15 minutes, from a distance of 40cm. Patients with persistent of paraesthesia after this period were called for screening twice a month until total absence of symptoms. Anamnesis and three types of clinical tests were used to determine the existence of the sensory deficiency:

Pin-prick test - performed with dental probe placed on the surface of the skin or mucous membrane, and then used to light prick the tissue, with simultaneous assessment of painful perception of the patient. Each area was examined three times consecutively, bilaterally, and the patient was asked to point to any difference in sensation between the two sides. The test was performed in the skin area of the corners of the mouth and mucous membranes from the vestibular side in the area of the canines

Light touch test - this test was performed by a tactile stimulation of the patient's skin. A ball of cotton wool was used to gently touch the skin at the corners of the lips, concentrically, gradually spreading towards the periphery until the patient felt touch, which made it possible to map the area with loss of sensation

Two point discrimination test - this test was performed using ten-millimetre scale divider. Tips of the divider at a distance of 2mm were placed on the skin at the corners of the mouth with continuous pressure, and the patient was asked whether he felt pressure in one or two points. Whenever the patient gave an incorrect response, the distance of the divider peaks at the next test would increase and whenever he gave the correct answer the distance of the divider peaks at the next test would be reduced until the smallest distance in which the patient could feel the pressure in two spots. The distance obtained was compared with the reference values. With preserved sensitivity in the corner of the lips, the pressure in two spots could be different at their distance from 2mm to 4mm and in the lower edge of the mandible at a distance of 8mm to 10mm. The minimum distance of two spots in which the pressure might vary was usually greater on the side of the damage.
Results were presented in percentages and ratios. A binomial test was used to analyse the frequency of events of interest. For multiple variables testing, Bonferroni correction was applied. All p values less than 0.05 were considered significant. All analyses were performed in the R programming language and environment (R Core Team, 2014).

Results

Of the total number of surgically extracted impacted lower third molars, the occurrence of sensory disturbances was recorded at 18/800 or 2.25%. In all patients, in the observed period of 6 months, full recovery of sensitivity occurred.

Of all recorded cases with injuries of the lower alveolar nerve, the largest number occurred after surgical extraction of the impacted lower third molars in the mesioangular position, and the least was registered at distoangular position (Table 1). Statistical analysis of the obtained results showed no statistically significant difference in the incidence of lower alveolar nerve injuries compared to the position of the impacted third molar.

By monitoring percentage of the sensitivity outbreak in the innervated zone of the inferior alveolar nerve, depending on the relationship of the molar roots and the mandibular canal, the highest percentage of sensitivity disturbance was registered in Class I, then in Class II and the smallest in Class III, classification by Tanaka et al (Table 2). The statistically significant difference was observed in Class I, in cases where mandibular canal overlaps more than half of the root of the tooth (p=0.001).

After additional analysis of all registered cases of sensitivity outbreaks in the innervated zone of the inferior alveolar nerve in different classes (Tanaka et al), to which the classification by Rood and Shehab was applied, it was concluded that nerve injuries were more frequently met when the "white" line of the root canal and canal diversion was interrupted and when the root deflection and narrowing of the canal were previously radiographically observed (Table 3), but without statistical significance.

Discussion

Surgical extraction of impacted lower third molars is a common therapeutic procedure in everyday oral surgery. Indications for it are numerous, although it might be followed by several possible complications, the injury of the inferior alveolar nerve being one of the most serious and unpleasant. According to literature, the frequency of this complication ranges from 0.5%15,16 to 8%17,18. In our study, the recorded frequency was 2.25%, which is roughly the registered value reported by Rood and Shehab11. Some authors state that the frequency of permanent sensory deficit is between 0.35%19 and 1.1%20, but there are also those who do not record it16,21, which is in correlation with the results of this study.

Some authors considered possible risk factors that could predict a possibility of occurrence of this complication. In this respect, the incidence of injuries of the inferior alveolar nerve is monitored in relation to a number of factors, such as: gender and age of respondents, experience of a surgeon and degree of tooth impaction. However, as the most commonly cited factors are angulation of the impacted third molar and the relationship of its roots to the mandibular canal.

According to our results, the favourable position for the injury of the lower alveolar nerve was the mesioangular position of the tooth, but not significant. The lowest frequency of the
occurrence of this complication was recorded with lower third molars in distoangular position. Firat et al.22, Hasegawa et al.23 and Edward et al.24 had similar results to ours. However, there are authors who report different results. Thus, Waseem et al.20, showed that the most risky situation for the emergence of a nerve injury is a vertical position and the least risky is horizontal position. The results of our study, however, indicate the importance of careful preoperative planning, as well as using adequate surgical approach in order to prevent the development of this complication.

The relationship between the tips of the roots of impacted lower third molars and the content of the mandibular canal was also analysed according to their mutual distance, on the panoramic radiographs, using the X-ray classification by Tanaka et al. and classification by Rood and Shehab. The results showed that the incidence of injuries is inversely proportional to the increase in the distance between the tip of the tooth roots and the canal. Such results suggest that the presence of a superimposition of roots with a mandibular canal on standard radiographs requires additional three-dimensional imaging techniques in order to more accurately perceive the relationship of the root tips of the impacted lower third molar to the content of the mandibular canal. Observation of radiological signs in this study, recommended by Rood and Shehab, show higher possibility of the inferior alveolar nerve injury during extraction if the illumination in the area of the root tips is present, or the loss of linear overshadowing characterized by the "roof", i.e. "bottom" of the mandibular canal, as well as when canal diversion, root deflection and narrowing of the canal are present, what is in accordance with results of Rood and Shehab11. Valmaseda-Castellon et al.25 state that only the canal diversion can predict a possible injury of the nerve, while Blaeser26 points out the illumination of the roots, the loss of the "white" line and the canal diversion as the most risky x-rays indicators. However, in contrast to these studies, in our research, in spite of the greater interrelation of these radiographic signs with the frequency of the occurrence of sensory disturbances, no statistical significance was recorded with any of the mentioned parameters.

It should be noted that in this study articaine was used as a local anaesthetic. Some authors state that articaine can induce paraesthesia after inferior alveolar nerve block. The reason for that, as they state, is higher concentration of anaesthetic (4%) compared to lidocaine (2%) and, eventually, greater potential to cause neurotoxicity. However, it is the lingual nerve that is more often affected with this complication (about 89\% of all cases)27.

Conclusion

The incidence of the inferior alveolar nerve injury during surgical extraction of impacted lower molars is approximately 2.25\%. The superimposition of the mandibular canal with the lower third molar roots at the panoramic radiography significantly increases the possibility of nerve injury. Angulation of the impacted tooth does not significantly affect the incidence of nerve injury after surgical extraction, nor does the relationship of the tips of tooth roots to the content of the mandibular canal.

References

25. Valmaseda-Castellon E, Berini-Aytes L, Gay-Escoda C. Inferior alveolar nerve damage after lower third molar surgical extraction: A prospective study of 1117

Table 1.

<table>
<thead>
<tr>
<th>Position of impacted lower third molar</th>
<th>n</th>
<th>Sensitivity disturbance - n (%)</th>
<th>p - value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>with</td>
<td>without</td>
</tr>
<tr>
<td>MESIOANGULAR</td>
<td>336</td>
<td>11 (3.3)</td>
<td>325 (96.7)</td>
</tr>
<tr>
<td>VERTICAL</td>
<td>242</td>
<td>4 (1.7)</td>
<td>238 (98.3)</td>
</tr>
<tr>
<td>HORIZONTAL</td>
<td>118</td>
<td>2 (1.7)</td>
<td>116 (98.3)</td>
</tr>
<tr>
<td>DISTOANGULAR</td>
<td>104</td>
<td>1 (1.0)</td>
<td>103 (99.0)</td>
</tr>
<tr>
<td>∑</td>
<td>800</td>
<td>18 (2.3)</td>
<td>782 (97.7)</td>
</tr>
</tbody>
</table>

Nerve injury in regard to angulation of the impacted lower third molar (Winter classification)
p-values were calculated by comparing each ratio with the ratio 18:782.

Table 2

<table>
<thead>
<tr>
<th>Classification by Tanaka et al.</th>
<th>n</th>
<th>Sensitivity disturbance - n (%)</th>
<th>p - value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>with</td>
<td>without</td>
</tr>
<tr>
<td>CLASS I</td>
<td>264</td>
<td>13 (4.9)</td>
<td>251 (95.1)</td>
</tr>
<tr>
<td>CLASS II</td>
<td>157</td>
<td>4 (2.6)</td>
<td>153 (97.4)</td>
</tr>
<tr>
<td>CLASS III</td>
<td>188</td>
<td>1 (0.5)</td>
<td>187 (99.5)</td>
</tr>
<tr>
<td>CLASS IV</td>
<td>106</td>
<td>0</td>
<td>106 (100)</td>
</tr>
<tr>
<td>CLASS V</td>
<td>85</td>
<td>0</td>
<td>85 (100)</td>
</tr>
</tbody>
</table>
Nerve injury in regard to the relationship of the molar roots and the mandibular canal (Tanaka and al. classification)
p-values were calculated by comparing each ratio with the ratio 18:782.
† - statistical significance, p < 0.05

Table 3.

<table>
<thead>
<tr>
<th>Classification by Rood and Shehab</th>
<th>n</th>
<th>Sensitivity disturbance - n</th>
<th>p - value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>With</td>
<td>Without</td>
</tr>
<tr>
<td>ILLUMINATION OF ROOT</td>
<td>172</td>
<td>7 (4.1)</td>
<td>165 (95.9)</td>
</tr>
<tr>
<td>DEFLECTION OF ROOT</td>
<td>174</td>
<td>3 (1.7)</td>
<td>171 (98.3)</td>
</tr>
<tr>
<td>NARROWING OF ROOT</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LIGHTNESS AND BIFID ROOT APEX</td>
<td>12</td>
<td>0</td>
<td>12 (100)</td>
</tr>
<tr>
<td>INTERRUPTION OF WHITE LINE OF CANAL</td>
<td>140</td>
<td>5 (3.6)</td>
<td>135 (96.4)</td>
</tr>
<tr>
<td>DIVERSION OF CANAL</td>
<td>67</td>
<td>2 (3.0)</td>
<td>65 (97.0)</td>
</tr>
<tr>
<td>NARROWING OF CANAL</td>
<td>44</td>
<td>1 (2.3)</td>
<td>43 (97.7)</td>
</tr>
<tr>
<td>Σ</td>
<td>609</td>
<td>18 (3.0)</td>
<td>591 (97.0)</td>
</tr>
</tbody>
</table>

Nerve injury in regard to the relationship of the molar roots and the mandibular canal (Rood and Shehab classification)
p-values were calculated by comparing each ratio with the ratio 18:591.

Figure 1 - Classification by Tanaka et al.\(^{10}\)

a. Class I - the canal overlaps more than half of the root of the tooth
b. Class II - the canal overlaps less than half of the root of the tooth
c. Class III - the root reaches to the upper limit of the mandibular canal
d. Class IV - the distance between the root and the top of the canal is less than 2mm
e. Class V - the distance between the root and the upper edge of the canal is more than 2mm
Figure 2. - Classification by Rood and Shehab

a) X-ray illumination of tooth root

b) deflection of tooth root

c) narrowing of the root

d) lightness and bifid root apex

e) interruption of the "white" line, i.e. X-rays of linear shadow, which delineates "roof" or "bottom" of mandibular canal (interruption of white line of the canal)

f) diversion of the canal

g) narrowing of the canal