Morphological and histopathological heart changes in autopsies of heroin abusers

Morfološki i patohistološki nalaz na srcu obdukovanih korisnika heroina

Ivan Aleksić*, Nadica Marinković*, Jelena Džambas*

Military Medical Academy, *Institute of Pathology and Forensic Medicine, Belgrade, Serbia; University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Sebia

Abstract

Background/Aim. Heroin is a semisynthetic opioid that may cause morphological and histopathological changes in heart: ventricular hypertrophy, myocardial fibrosis, hypertrophy of cardiomyocytes, myofibrils contraction band necrosis, loss of myocytes nuclei and cross-striation, perivascular bleeding, inflammatory cells infiltrate. The aim of the study was to show morphological and histopathological heart changes in autopsies of the long-time heroin abusers with positive toxicological analysis for 6-monoacetylmorphine (6-MAM) and morphine in blood and urine.

Methods. Retrospective study was done at the Institute of Pathology and Forensic of the Medicine Military Medical Academy in Belgrade between 2010 and 2014 and included forensic autopsies of 27 examinees aged between 18 and 60. Heart ventricles thicknesses was analysed and histopathological myocard findings from processed material stained by hematoxyline-eosine (H&E) and trichrome stains (Masson) were examined. 6-MAM and morphine concentration in blood and urine using high-performance liquid chromatography coupled with photodiode (HPLC-PDA) and ultraviolet (UV) detector were analysed.

Results. Heart ventricles thickness was increased in all persons (27/27; 100%) left 1.74 ± 0.17 cm and right 0.6 ± 0.09 cm. Myocardial fibrosis affected 27/27 (100%) of the examined persons including perivascular one in 24/27 (88.89%) and interstitial focal fibrosis in 3/27 (11.11%); hypertrophy of cardiomyocytes was present in 22/27 (81.48%); myofibril contraction band necrosis in 22/27 (81.48%); loss of myocytes nuclei and cross-striation in 10/27 (37.04%); fresh perivascular bleeding in 23/27 (85.19%); focal inflammatory cells infiltrate in 14/27 (51.85%). In toxicological findings, in 27/27 (100%), 6-MAM and morphine were found in urine. Both 6-MAM and morphine in blood were found in 3/27 (11.11%) and only morphine in blood in 16/27 (59.26%) persons subjected to an autopsy.

Conclusion. Our results indicate both morphological (left and right ventricle hypertrophy) and histopathological heart changes (myocardial fibrosis, hypertrophy of cardiomyocytes, contraction-band necrosis, loss of myocytes nuclei and cross-striation, fresh perivascular bleeding and focal inflammatory infiltrate) in long-term heroin abusers. These changes are non-specific and could be caused either by long-term heroin abuse or by other factors. Having in mind a lack of medical histories of examined we could not exclude other factors besides long-term heroin abuse as cause of heart changes.

Key words: heroin dependence; heart; myocardium; morphine; histological techniques; autopsy.
Introduction

In European population 0.6% of individuals aged between 15 and 64 are heroin abusers. Heroin (3, 6-diacetylmorphine) is a semisynthetic opioid, morphine derivative synthesized by acetylation of two hydroxyl groups of morphine. It can be taken into body intravenously, intramuscularly, intranasally, subcutaneously and by smoking. Maximal blood concentration is reached 1 to 5 minutes after intravenous intake and smoking or 5 minutes after intranasal and intramuscular application of heroin. Heroin is metabolized fast in the body to 6-monoacetylmorphine (6-MAM) which is converted to morphine by 6-acetyl group hydroxylation. The metabolic path of morphine includes glucuronidation to 6-MAM which is subsequently hydroxylated to morphine. The aim of the study was to show the presence of morphine metabolites, 6-MAM and morphine, but without presence of other drugs, alcohol and other elements of abuse in body fluids (blood and urine) were analysed. In external autopsy examination fresh injection marks, scars and tattoos were searched. Toxicological analyses were done using high-performance liquid chromatography coupled with photodiode array detection with ultraviolet (UV) detection in the National Poison Control Centre, the Military Medical Academy in Belgrade and compared with standard library of spectrophotometry. Results were statistically analysed using descriptive statistics methods and non-parametrical tests by a statistical software package IBM SPSS Statistics 20. Non-parametrical test included Wilcoxon signed rank test, with confidence level at $p < 0.05$.

Methods

Retrospective study was done at the Institute of Pathology and Forensic Belgrade of the Medicine Military Medical Academy in Belgrade between 2010 and 2014 and included 27 forensic autopsies of examinees aged between 18 and 60. Heteroanamnestic data from family members showed heroin abuse lasting more than 2 years. An average age of examinees was 35.11 ± 10.78 years. Most of the examined persons were males, 25/27 (92.59%), while there were 2/27 (7.41%) females. Forensic autopsies with positive toxicological analysis for heroin metabolites, 6-MAM and morphine, but without presence of other drugs, alcohol and other elements of abuse in body fluids (blood and urine) were analysed. In external autopsy examination fresh injection marks, scars and tattoos were searched as common findings for the population of drug abusers. During internal examination, left and right heart ventricle thickness was measured and parts of heart muscle were taken as material for further histopathological examination. Normal thickness value varies from 1.0 to 1.5 cm for left and 0.25 to 0.5 cm for right ventricle. The material was processed by standard procedure, stained by hematoxylin-eosine (H&E) and trichrome stains by Masson. Light microscope Olympus BX 50 (×40) was used for histopathological examination of stained microscopic slides. Body fluids (blood and urine) were taken during the autopsy and the concentrations of 6-MAM and morphine were searched. Toxicological analyses were done using high-performance liquid chromatography coupled with photodiode array detection with ultraviolet (UV) detection in the National Poison Control Centre, the Military Medical Academy in Belgrade and compared with standard library of spectrophotometry. Results were statistically analysed using descriptive statistics methods and non-parametrical tests by a statistical software package IBM SPSS Statistics 20. Non-parametrical test included Wilcoxon signed rank test, with confidence level at $p < 0.05$.

Results

Fresh injection marks were found during external examination in 17/27 (62.96%), tattoos in 14/27 (51.85%), scars in 18/27 (66.67%), both linear and circular scars in 4/27 (14.81%), only linear in 11/27 (40.74%) and only circular in 3/27 (11.11%) persons subjected to an autopsy. Neither scars and tattoos nor fresh injection marks were examined in 1/27 (3.70%) autopsies. All 27/27 (100%) of the examined had increased both left and right heart ventricles thickness in comparison to normal thickness values. An average left and right ventricles thickness of the examined was 1.74 ± 0.17 cm, and 0.6 ± 0.09 cm, respectively.

Findings of the histopathological examination of the heart muscle material were: myocardial fibrosis in 27/27...
(100%), fresh perivascular bleeding in 23/27 (85.19%), hypertrophy of cardiomyocytes in 22/27 (81.48%), contraction band necrosis of myofibrils in 22/27 (81.48%), focal inflammatory cells infiltrate in 14/27 (51.85%) loss of myocytes nuclei and cross-striation in 10/27 (37.04%), cases (Figure 1). Perivascular myocardial fibrosis was found in 24/27 (88.89%) examined (Figure 2) and interstitial focal fibrosis in 3/27 (11.11%) (Figure 3). All 6 findings mentioned above were found in 2/27 (7.41%) examined people, 5 findings in 11/27 (40.74%), 4 findings in 7/27 (25.93%), 3 in 6/27 (22.22%) and 1/27 (3.70%) had 2 histopathological change.

In all examined persons [27/27 (100%)], 6-MAM and morphine were found in urine. Both 6-MAM and morphine were found in blood of 3/27 (11.11%) and only morphine in blood of 16/27 (59.26%) examined. 6-MAM concentrations were 0.001–3.9 mg/L in urine, and 0.006–0.5 mg/L in blood. Morphine concentrations range was 0.015–12.72 mg/L in urine, and 0.004–0.8 mg/L in blood. There was not statistically significant difference between concentrations of 6-MAM in blood and urine ($p = 0.109$) but there was between concentrations of morphine in blood and urine ($p = 0.002$). There was no statistically significant difference between concentrations of 6-MAM and morphine in blood ($p = 0.717$), but there was in urine ($p = 0.023$).

Discussion

Injection marks which were found during external examination were due to intravenous heroin intake. Skin scars were usually self-inflicted [10]. Tattoos are usually covering injection marks and scars as a try of covering the needle track of injections [11].

The frequency of heart diseases due to opioid consumption is still unknown. In one study it was published that only 10% of the examined had a heart disease (endocarditis), but also in another one it was reported that a heart damage was found in 100% of the examined people [7]. The long-term heroin or morphine abuse causes hypoxia that leads to myocardial hypertrophy and myocardial fibrosis [12,13]. Respiratory centre depression and hard breathing as a consequence of lowered neuron sensibility in respiratory centre in brainstem after intravenous drug application is one of possible causes of myocardial hypoxia [1]. In our study, a morphological change in heart presented in all examined people during autopsies was left and right ventricle myocardial hypertrophy. Left ventricle myocardial hypertrophy is described also in other studies on autopsies of abusers as the most frequent finding among cardiac changes in opioid abusers [7]. It is shown in results of other studies that the frequency of this change increases with the age of abusers, leading to 2.1% between the age of 15 and 24 years and 10.7% in older than 44 years [7]. Myocardial hypertrophy increases the risk for hypoxia which can cause arrhythmias and cardiac arrest [12]. Hypoxia leads to apoptosis of myocytes similarly to myocardial infarction, where fibrosis is formed by remodelling in the region of death myocytes [13]. Multiplied fibrous tissue in heart muscle was present in all examined people in this study. Some authors report that fibrosis is a response to chronic hypertension that causes myocardial hypertrophy, and other au-
thors add the cellular growth factors as the reason of fibrosis.

It is shown in experimental studies that the absence of fibroblast growth factor 21 leads to myocardial hypertrophy and ischemia by activation of proinflammatory pathways and oxidative stress and also by fibrosis and heart metabolism disruption. Collagen accumulation in heart muscle leads to elasticity decrease, thickening and solidification of ventricle wall that complicates contractility. The other study shows that heroin and morphine intoxication causes myocardial contraction depression.

Intravenous heroin abusers are exposed to many cardiotoxic factors that lead frequently to heart damage. Coronary blood vessels vasoconstriction is caused by increased catecholamine level, especially noradrenaline and dopamine, detectable in blood and urine during the first day after heroin intake. Nowadays, investigations on experimental animals confirm previous theories of early heroin metabolism connection with catecholamine concentration increase. Heron has systemic and direct effect on the heart. Heart muscle rhabdomyolysis, hypoxia, acidosis and vasoconstriction lead to muscle necrosis and hypersensitive reaction to heroin. Heroin has direct effect on coronary arteries causing its spasm or inflammation that may lead to occlusion. It is written in studies that heroin has a direct effect on vasomotor centre with increased parasympathetic activity, decreased sympathetic activation and histamine production stimulation in mastocytes, with bradycardia and hypotension that may then cause myocardial infarction. Increased parasympathetic activity may also play a role in coronary artery spasm initiation. Bradycardia, tachycardia and atrial fibrillation are noted after heroin application. It was shown in experimental studies that morphine perfusion in sinoatrial node first caused tachycardia and then bradycardia which was explained as a consequence of vagal stimulation. Fresh lesions, as perivascular bleeding in heart muscle and myofibril contraction band necrosis are not specific but can appear due to direct toxic and hypoxic heroin effects and can cause heart rhythm changes and sudden cardiac death.

Presence of heroin metabolites may initiate histamine release. Fresh perivascular bleeding in heart muscle is caused by histamine-induced increased blood vessel wall permeability.

Conclusion

Our results indicate left and right ventricle hypertrophy as morphological heart changes as well as histopathological heart changes: myocardial fibrosis, hypertrophy of cardiomyocytes, contraction-band necrosis, loss of myocytes nuclei and cross-striation, fresh perivascular bleeding and focal inflammatory infiltrate. These changes are non-specific and could be caused either by the long-term heroin abuse or by many other factors, for example, arterial hypertension and other drugs (stimulants) abuse. Having in mind a lack of medical histories of the examined and the fact that all the information we collected were based on heteroanamnetic data from family members, we could not exclude other factors besides the long-term heroin abuse as a cause of heart changes.

REFERENCES

Received on April 18, 2016.
Revised on March 06, 2017.
Accepted on April 04, 2017.
Online First April, 2017.